In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa...In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN...面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。展开更多
传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配...传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配问题,提出一种异构功率控制图神经网络(Heterogeneous Power Control Graph Neural Network,HPCGNN)算法,旨在最大化所有用户的加权和速率。首先通过构建干扰的异构图,将信道和噪声等信息嵌入到图的节点和边;再由HPCGNN完成消息传递和更新,采用无监督学习方式优化深度神经网络(Deep Neural Network,DNN)参数,最终得到最佳的功率分配。仿真结果表明,相较于其他深度学习算法,所提算法能够有效提高系统性能,且在损失5%性能下相较分式规划(Fractional Programming,FP)能降低82%~98%的时间复杂度。展开更多
异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入...异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入方法中,元路径通常被用来获取节点间的高阶结构和语义信息,然而现有方法忽略了元路径实例中不同类型节点或异质图中不同类型邻居节点的差异,导致信息丢失,进而影响节点嵌入质量。针对上述问题,提出基于数据增强的异质图注意力网络(Heterogeneous graph Attention Network based on Data Augmentation,HANDA),以更好地学习节点嵌入向量。首先,提出基于元路径邻居的边增强。该方法基于元路径获取节点的元路径邻居,用节点及其元路径邻居形成的语义边增强异质图。这些增强边不仅蕴含了节点间的高阶结构和语义,还缓解了异质图的稀疏性。其次,提出融入节点类型注意力的节点嵌入。该方法采用多头注意力从多个角度学习不同直接边邻居及增强边邻居的重要性并在注意力中融入节点的类型信息,进而通过消息传递、直接边邻居及增强边邻居同时获取节点的属性、高阶结构和语义信息,提升了节点嵌入质量。在真实数据集上的实验验证了HANDA模型在节点分类、链接预测任务上的效果优于基准模型。展开更多
跨域推荐技术通过深入挖掘及利用其他域的有用信息,有效提升目标域的推荐表现,为解决用户冷启动问题提供了一种有效途径。然而,当前跨域推荐方法存在局限,未能细粒度地扩展隐式关系,并且忽视了嵌入向量中可能包含的冗余信息,从而制约了...跨域推荐技术通过深入挖掘及利用其他域的有用信息,有效提升目标域的推荐表现,为解决用户冷启动问题提供了一种有效途径。然而,当前跨域推荐方法存在局限,未能细粒度地扩展隐式关系,并且忽视了嵌入向量中可能包含的冗余信息,从而制约了跨域推荐系统的性能。鉴于此,提出一种基于域内和域间元路径聚合的跨域推荐方法,IMCDR(intra-domain and inter-domain meta-paths aggregation based cross-domain recommendation)。IMCDR首先通过细粒度地计算实体多字段的语义嵌入,有效扩展用户-用户和物品-物品关系;然后,IMCDR基于域内元路径和域间元路径为每个节点分别生成私有特征和共享特征,并将它们有效融合,以获得更高质量的嵌入向量。在三个跨域推荐任务上的综合实验结果表明,IMCDR在有效性和性能上具有明显优势。展开更多
文摘In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
文摘面向开源项目推荐开发人员对开源生态建设具有重要意义。区别于传统软件开发,开源领域的开发者、项目、组织及相互关系体现了开放式协作项目的特点,而它们蕴含的语义有助于精准推荐开源项目的开发者。因此,提出一种基于协作贡献网络(CCN)的开发者推荐(DRCCN)方法。首先,利用开源软件(OSS)开发者、OSS项目、OSS组织之间的贡献关系构建CCN;其次,基于CCN构建一个3层深度的异构GraphSAGE(Graph SAmple and aggreGatE)图神经网络(GNN)模型,预测开发者节点和开源项目节点之间的链接,从而产生相应的嵌入对;最后,根据预测结果,采用K最近邻(KNN)算法完成开发者推荐。在GitHub数据集上训练和测试模型的实验结果表明,相较于序列推荐的对比学习模型CL4SRec(Contrastive Learning for Sequential Recommendation),DRCCN在精确率、召回率和F1值这3个指标上分别提升了约10.7%、2.6%和4.2%。因此,所提模型可以为开源社区项目的开发者推荐提供重要的参考依据。
文摘传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配问题,提出一种异构功率控制图神经网络(Heterogeneous Power Control Graph Neural Network,HPCGNN)算法,旨在最大化所有用户的加权和速率。首先通过构建干扰的异构图,将信道和噪声等信息嵌入到图的节点和边;再由HPCGNN完成消息传递和更新,采用无监督学习方式优化深度神经网络(Deep Neural Network,DNN)参数,最终得到最佳的功率分配。仿真结果表明,相较于其他深度学习算法,所提算法能够有效提高系统性能,且在损失5%性能下相较分式规划(Fractional Programming,FP)能降低82%~98%的时间复杂度。
文摘异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入方法中,元路径通常被用来获取节点间的高阶结构和语义信息,然而现有方法忽略了元路径实例中不同类型节点或异质图中不同类型邻居节点的差异,导致信息丢失,进而影响节点嵌入质量。针对上述问题,提出基于数据增强的异质图注意力网络(Heterogeneous graph Attention Network based on Data Augmentation,HANDA),以更好地学习节点嵌入向量。首先,提出基于元路径邻居的边增强。该方法基于元路径获取节点的元路径邻居,用节点及其元路径邻居形成的语义边增强异质图。这些增强边不仅蕴含了节点间的高阶结构和语义,还缓解了异质图的稀疏性。其次,提出融入节点类型注意力的节点嵌入。该方法采用多头注意力从多个角度学习不同直接边邻居及增强边邻居的重要性并在注意力中融入节点的类型信息,进而通过消息传递、直接边邻居及增强边邻居同时获取节点的属性、高阶结构和语义信息,提升了节点嵌入质量。在真实数据集上的实验验证了HANDA模型在节点分类、链接预测任务上的效果优于基准模型。
文摘跨域推荐技术通过深入挖掘及利用其他域的有用信息,有效提升目标域的推荐表现,为解决用户冷启动问题提供了一种有效途径。然而,当前跨域推荐方法存在局限,未能细粒度地扩展隐式关系,并且忽视了嵌入向量中可能包含的冗余信息,从而制约了跨域推荐系统的性能。鉴于此,提出一种基于域内和域间元路径聚合的跨域推荐方法,IMCDR(intra-domain and inter-domain meta-paths aggregation based cross-domain recommendation)。IMCDR首先通过细粒度地计算实体多字段的语义嵌入,有效扩展用户-用户和物品-物品关系;然后,IMCDR基于域内元路径和域间元路径为每个节点分别生成私有特征和共享特征,并将它们有效融合,以获得更高质量的嵌入向量。在三个跨域推荐任务上的综合实验结果表明,IMCDR在有效性和性能上具有明显优势。