A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ...A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.展开更多
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. T...The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign.展开更多
This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ah...This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine, the stochastic heat engine constructed from a Brownian particle, and Feynman's ratchet as a heat engine are presented. It is found that: the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.展开更多
The full wave TORIC code and the Kinetic Fokker-Planck SSFPQL code are com- bined to perform self-consistent simulations of the ICRF heating in the EAST 2D magnetic config- uration. The combined package is applied to ...The full wave TORIC code and the Kinetic Fokker-Planck SSFPQL code are com- bined to perform self-consistent simulations of the ICRF heating in the EAST 2D magnetic config- uration. The combined package is applied to the ICRF hydrogen minority heating in a deuterium plasma with the hydrogen concentration up to 10%. The fast wave propagation and absorption properties, power partitions among the plasma species and the RF driven energetic tails have been analyzed. Meanwhile, in order to optimize the ICRF heating, changing the resonance locations has also been considered in EAST plasmas.展开更多
A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and to...A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.展开更多
A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed S...A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t...For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.展开更多
On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In expe...On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.展开更多
在传统的利用内燃机驱动的冷热电三联供(combined cooling,heating and power,CCHP)系统的基础上,文章提出了结合太阳能发电和内燃机联合驱动的新型冷热电联供系统模型,并加入了储能电池以提高可再生能源的利用率并克服太阳能发电的缺点...在传统的利用内燃机驱动的冷热电三联供(combined cooling,heating and power,CCHP)系统的基础上,文章提出了结合太阳能发电和内燃机联合驱动的新型冷热电联供系统模型,并加入了储能电池以提高可再生能源的利用率并克服太阳能发电的缺点;通过分析新型CCHP系统的能量流动过程,针对该新型模型提出了基于该系统的经济性、一次能源消耗量、用户满足度的多目标优化模型,以天然气的使用量、向电网侧的购电量以及切除的负载数为优化变量,使用字典序优化算法对其进行求解。展开更多
文摘A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2015GB101001)National Natural Science Foundation of China(Nos.11575237,11375235,11375236)
文摘The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign.
基金supported by the National Natural Science Foundation of China (Grant No.11075015)the Fundamental Research Funds for the Central Universities
文摘This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine, the stochastic heat engine constructed from a Brownian particle, and Feynman's ratchet as a heat engine are presented. It is found that: the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.
基金supported by National Natural Science Foundation of China(Nos.11105179,11375235 and 11375236)
文摘The full wave TORIC code and the Kinetic Fokker-Planck SSFPQL code are com- bined to perform self-consistent simulations of the ICRF heating in the EAST 2D magnetic config- uration. The combined package is applied to the ICRF hydrogen minority heating in a deuterium plasma with the hydrogen concentration up to 10%. The fast wave propagation and absorption properties, power partitions among the plasma species and the RF driven energetic tails have been analyzed. Meanwhile, in order to optimize the ICRF heating, changing the resonance locations has also been considered in EAST plasmas.
基金Project supported by Hi-Tech Research and Development Program of China (Grant Nos. 2007AA05Z436 and 2009AA050602)Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500)+3 种基金National Basic Research Program of China(Grant Nos. 2006CB202602 and 2006CB202603)National Natural Science Foundation of China (Grant No. 60976051)International Cooperation Project between China-Greece Government (Grant Nos. 2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295)
文摘A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.
基金supported by National Natural Science Foundation of China (Nos.50836007, 10921062)
文摘A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.
文摘For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0309103)National Natural Science Foundation of China(Nos.12305243 and 51821005)。
文摘On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.
文摘在传统的利用内燃机驱动的冷热电三联供(combined cooling,heating and power,CCHP)系统的基础上,文章提出了结合太阳能发电和内燃机联合驱动的新型冷热电联供系统模型,并加入了储能电池以提高可再生能源的利用率并克服太阳能发电的缺点;通过分析新型CCHP系统的能量流动过程,针对该新型模型提出了基于该系统的经济性、一次能源消耗量、用户满足度的多目标优化模型,以天然气的使用量、向电网侧的购电量以及切除的负载数为优化变量,使用字典序优化算法对其进行求解。