Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the ...Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.展开更多
The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation s...The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation state had significant effects on both rolling and recrystallization textures of Al alloy. For the alloy with no or little precipitate, the orientation intensities were distributed more homogeneously along the β-fiber. With increasing aging temperature, the orientation intensities along the β-fiber increased firstly and decreased then. Simultaneity, the orientation intensities along the β-fiber were distributed more and more inhomogeneously. On the other hand, with the precipitates increasing the recrystallization textures changed gradually from {001}<UVW> and very weak {011}<111> orientation to the strong {001}<311> and {011}<111> orientation.展开更多
The aging behaviors of Al 1.42%Li 2.41%Cu 0.93%Mg 0.073%Zr 0.17%Sc(mass fraction, the same below) alloy at room temperature, 160 ℃ , and 160 ℃ after 8% pre deformation were studied respectively by hardness measureme...The aging behaviors of Al 1.42%Li 2.41%Cu 0.93%Mg 0.073%Zr 0.17%Sc(mass fraction, the same below) alloy at room temperature, 160 ℃ , and 160 ℃ after 8% pre deformation were studied respectively by hardness measurement. The microstructure of the alloy in various aging conditions was observed by TEM. The results show that the main precipitations of the alloy in quenching condition are the particles containing Sc and Zr which have certain coherent relation with the matrix. Addition of Sc in Al Li Cu Mg Zr alloy will be favorable to promoting precipitation. The particles can serve as preferred nucleation sites for δ′ phases which accelerate the aging hardening rate at initial aging. The main hardening phases of the alloy aged at 160 ℃ are δ′ and δ′/β′ composite precipitates. The size of the composite precipitates is very small (nanometer size). The composite precipitates will preclude efficiently the formation concentrative slip location and will improve the mechanical properties of the alloy. S′ phase will occur in the alloy aged at 160 ℃ after 8% pre deformation. It is found that 8% pre deformation has no obvious influence on the precipitation of the composite phase.展开更多
The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties an...The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.展开更多
基金Project(E2013402056)supported by the Natural Science Foundation of Hebei Province,ChinaProject(QN2014002)supported by the Science and Technology Research Foundation of Hebei Education Department for Young Teachers in University,ChinaProject(51601053)supported by the National Natural Science Foundation of China
文摘Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.
文摘The deformation and recrystallization textures of 6111 Al alloy with various precipitation states have been investigated by means of the orientation distribution functions (ODFs). It was found that the precipitation state had significant effects on both rolling and recrystallization textures of Al alloy. For the alloy with no or little precipitate, the orientation intensities were distributed more homogeneously along the β-fiber. With increasing aging temperature, the orientation intensities along the β-fiber increased firstly and decreased then. Simultaneity, the orientation intensities along the β-fiber were distributed more and more inhomogeneously. On the other hand, with the precipitates increasing the recrystallization textures changed gradually from {001}<UVW> and very weak {011}<111> orientation to the strong {001}<311> and {011}<111> orientation.
基金The Key Program of the 9th Five year Plan of China!(No .95 YS 0 0 1)
文摘The aging behaviors of Al 1.42%Li 2.41%Cu 0.93%Mg 0.073%Zr 0.17%Sc(mass fraction, the same below) alloy at room temperature, 160 ℃ , and 160 ℃ after 8% pre deformation were studied respectively by hardness measurement. The microstructure of the alloy in various aging conditions was observed by TEM. The results show that the main precipitations of the alloy in quenching condition are the particles containing Sc and Zr which have certain coherent relation with the matrix. Addition of Sc in Al Li Cu Mg Zr alloy will be favorable to promoting precipitation. The particles can serve as preferred nucleation sites for δ′ phases which accelerate the aging hardening rate at initial aging. The main hardening phases of the alloy aged at 160 ℃ are δ′ and δ′/β′ composite precipitates. The size of the composite precipitates is very small (nanometer size). The composite precipitates will preclude efficiently the formation concentrative slip location and will improve the mechanical properties of the alloy. S′ phase will occur in the alloy aged at 160 ℃ after 8% pre deformation. It is found that 8% pre deformation has no obvious influence on the precipitation of the composite phase.
基金Project(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(41423040204)supported by National Key Laboratory of Light Weight and High Strength Structural Materials Equipment Pre-research Laboratory Foundation,China。
文摘The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.