期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一类对流-扩散方程热源识别反问题 被引量:3
1
作者 李晓晓 郭亨贞 +2 位作者 万诗敏 汪训洋 杨帆 《兰州理工大学学报》 CAS 北大核心 2012年第3期147-149,共3页
根据测量数据,利用分离变量法,得到未知源函数和测量数据之间的关系式.这类问题称为未知源识别反问题,是典型的不适定问题.利用截断正则化方法,得到问题的一个正则近似解,并且给出正则解和精确解之间具有H¨oler型的误差估计.
关键词 热源 反问题 对流-扩散方程 截断方法
在线阅读 下载PDF
三维非稳态热传导逆问题反演算法研究 被引量:12
2
作者 钱炜祺 何开锋 汪清 《力学学报》 EI CSCD 北大核心 2008年第5期611-618,共8页
利用表面温度测量来反演热传导方程中的热源项是一类典型的热传导逆问题,在采用有限体积法对三维非稳态热传导问题进行数值求解的基础上,将该热传导逆问题转化为优化问题,建立了伴随方程法和共轭梯度法这两类反演算法.采用这两类算法对... 利用表面温度测量来反演热传导方程中的热源项是一类典型的热传导逆问题,在采用有限体积法对三维非稳态热传导问题进行数值求解的基础上,将该热传导逆问题转化为优化问题,建立了伴随方程法和共轭梯度法这两类反演算法.采用这两类算法对一个典型算例的计算结果表明:建立的两类反演算法是有效的,具有较好的抗噪性能.此外,对反演算法中计算收敛准则的选取进行了较深入的分析,结果表明,由于热传导逆问题的不适定性,优化过程中目标函数值越小并不意味着反演结果与真值更为接近,可以通过设定合适的收敛准则来模拟正则化项的作用,克服不适定性的影响. 展开更多
关键词 三维非稳态热传导逆问题 热源项 伴随方程 共轭梯度法 收敛准则
在线阅读 下载PDF
带有Riemann-Liouville导数的分数阶热传导方程逆源问题的正则化方法 被引量:3
3
作者 史暖峰 冯立新 《吉林大学学报(理学版)》 CAS 北大核心 2021年第4期743-752,共10页
首先,用Tikhonov正则化方法求解带有Riemann-Liouville导数的分数阶热传导方程逆源问题,得到了包含Mittag-Leffler函数的正则解;其次,对正则解进行收敛性分析,给出先验参数选取下正则解和精确解的误差估计及后验参数选取下正则化参数的... 首先,用Tikhonov正则化方法求解带有Riemann-Liouville导数的分数阶热传导方程逆源问题,得到了包含Mittag-Leffler函数的正则解;其次,对正则解进行收敛性分析,给出先验参数选取下正则解和精确解的误差估计及后验参数选取下正则化参数的取值范围.数值实验结果表明了该正则化方法的有效性. 展开更多
关键词 分数阶热传导方程 逆源问题 Mittag-Leffler函数 正则化方法 误差估计
在线阅读 下载PDF
一种求解平面热传导反问题的新型无网格方法
4
作者 王婷婷 王发杰 张耀明 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第6期212-217,共6页
平均源边界点法(average source boundary node method,ASBNM)是一种新型无网格方法。采用该方法可避免边界元方法中的强弱奇异积分计算,克服了基本解法中的虚假边界问题。首次采用平均源边界点法与截断奇异值分解(TSVD)和Tikhonov正则... 平均源边界点法(average source boundary node method,ASBNM)是一种新型无网格方法。采用该方法可避免边界元方法中的强弱奇异积分计算,克服了基本解法中的虚假边界问题。首次采用平均源边界点法与截断奇异值分解(TSVD)和Tikhonov正则化技术相结合模拟平面热传导Cauchy反问题,通过广义交叉校验准则(GCV)来确定正则化参数。提出的无网格方法基于一种完全规则化边界积分方程,通过加减去奇异和平均积分的思想,消除了基本解的源点奇异性,具有无网格、无积分、仅需边界离散、半解析的特性。3个典型数值算例的结果表明:该方法在求解平面热传导反问题时具有简单、精确、稳定的优势,即使边界数据噪音水平达到5%,仍可获得高精度的数值解,对平面热传导反问题的研究具有参考意义,并拓展了平均源边界点法的应用领域。 展开更多
关键词 平均源边界点法 热传导反问题 截断奇异值分解 TIKHONOV正则化 广义交叉校验准则
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部