Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between th...Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.展开更多
The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of...The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of the SLMBA,a codesigned method of the coupler and power amplifier(PA)is proposed,which is different from the traditional design of couplers.According to the back-off point and saturation point of the SLMBA,this coupler-PA codesign approach can make the working state of the coupler and three-way PA closer to the actual situation,which improves the overall performance of the SLMBA.The maximum output power ratio of the control PA and the balance PA is then determined by the preset output power back-off(OBO)of 10 dB,and the phase compensation line is determined by the trace of the load modulation impedance of the balanced PA.In order to verify the proposed method,an SLMBA operating at 1.5–2.7 GHz(57%relative bandwidth)is designed.The layout simulation results show that its saturated output powers achieve 40.7–43.7 dBm and the small signal gains are 9.7–12.4 dB.Besides,the drain efficiencies at the saturated point and 10 dB OBO point are 52.7%–73.7%and 44.9%–59.2%respectively.展开更多
Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power gene...Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power generation,it brings out the convenience of onsite power generation by drawing energy from local sources,which meets the emerging pow⁃er demand of long-lasting,extensively-deployed,and maintenance-free Internet of Things(IoT).Kinetic energy harvesting(KEH)is one of the most promising EH solutions toward the realization of battery-free IoT.The KEH-based battery-free IoT can be extensively deployed in the smart home,smart building,and smart city scenarios,enabling perceptivity,intelli⁃gence,and connectivity in many infrastructures.This paper gives a brief introduction to the configurations and basic principles of practical KEH-IoT systems,including their mechani⁃cal,electrical,and computing parts.Although there are already a few commercial products in some specific application markets,the understanding and practice in the co-design and optimization of a single KEH-IoT device are far from mature,let alone the conceived multia⁃gent energy-autonomous intelligent systems.Future research and development of the KEHIoT system beckons for more exchange and collaboration among mechanical,electrical,and computer engineers toward general design guidelines to cope with these interdisciplinary en⁃gineering problems.展开更多
Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,...Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research.展开更多
集成电路制造技术的迅速发展已经可以把一个完整的电子系统集成到一个芯片上即所谓的系统级芯片 (Sys tem on Chip ,简称SoC)。传统的设计方法是将硬件和软件分开来设计的 ,在硬件设计完成并生产出样片后才能调试软件。本文介绍了针对...集成电路制造技术的迅速发展已经可以把一个完整的电子系统集成到一个芯片上即所谓的系统级芯片 (Sys tem on Chip ,简称SoC)。传统的设计方法是将硬件和软件分开来设计的 ,在硬件设计完成并生产出样片后才能调试软件。本文介绍了针对于系统级芯片设计的软硬件协同设计技术 (co design)的概念和设计流程 。展开更多
At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To sol...At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To solve the problem,key technical research on the 3D integrated design of railway engineering was stuedied based on homemade graphics engines to propose an innovative railway BIM platform framework.The entire process was completed from the top-level design to the engineering verification of the platform.The co-designed mechanism of a"center model and link"hybrid mode was constructed,which solved the difficulties of data management and increment synchronization at a large scale,achieving teamwork among surveying and mapping,alignments,and bridges.The results of this study could provide strong support for the development of BIM software for a whole railway and all majors.展开更多
The filter and antenna are two key components of the radio frequency(RF)front-end.When the antenna is directly connected with the filter,additional mismatch losses will be caused.Therefore,the antenna and filter are i...The filter and antenna are two key components of the radio frequency(RF)front-end.When the antenna is directly connected with the filter,additional mismatch losses will be caused.Therefore,the antenna and filter are integrated into a single device to provide both filtering and radiating functions.In this way,many advantages,like low cost,light weight,small size and lower insertion loss can be obtained.In this paper,the co-design approaches of RF filter-antenna are reviewed.Based on the open literatures,the integrated approaches of filtering antenna can be classified into five main categories:1)Co-design by optimizing the interfacing impedance,2)co-design according to the synthesis approach of filter,3)co-design by embedding novel resonators within the feeding structures,4)co-design by employing auxiliary physical structures,and 5)other methods.The RF filter-antenna system can improve the integration degree of RF frontend,reduce its size and cost,and optimize its performance.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2024YFE0200500in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2024A1515012615in part by the Department of Science and Technology of Guangdong Province under Grant 2021QN02X491。
文摘Precise and low-latency information transmission through communication systems is essential in the Industrial Internet of Things(IIoT).However,in an industrial system,there is always a coupling relationship between the control and communication components.To improve the system's overall performance,exploring the co-design of communication and control systems is crucial.In this work,we propose a new metric±Age of Loop Information with Flexible Transmission(AoLI-FT),which dynamically adjusts the maximum number of uplink(UL)and downlink(DL)transmission rounds,thus enhancing reliability while ensuring timeliness.Our goal is to explore the relationship between AoLI-FT,reliability,and control convergence rate,and to design optimal blocklengths for UL and DL that achieve the desired control convergence rate.To address this issue,we first derive a closed-form expression for the upper bound of AoLI-FT.Subsequently,we establish a relationship between communication reliability and control convergence rates using a Lyapunov-like function.Finally,we introduce an iterative alternating algorithm to determine the optimal communication and control parameters.The numerical results demonstrate the significant performance advantages of our proposed communication and control co-design strategy in terms of latency and control cost.
基金supported in part by the National Natural Science Foundation of China under Grant Nos. 62001061, 62171068 and 62171065ZTE Industry-University-Institute Cooperation Funds under Grant No. HC-CN-20210520005
文摘The basic theory of the sequential load-modulated balanced amplifier(SLMBA)is introduced and the working principle of its active load modulation is analyzed in this paper.In order to further improve the performance of the SLMBA,a codesigned method of the coupler and power amplifier(PA)is proposed,which is different from the traditional design of couplers.According to the back-off point and saturation point of the SLMBA,this coupler-PA codesign approach can make the working state of the coupler and three-way PA closer to the actual situation,which improves the overall performance of the SLMBA.The maximum output power ratio of the control PA and the balance PA is then determined by the preset output power back-off(OBO)of 10 dB,and the phase compensation line is determined by the trace of the load modulation impedance of the balanced PA.In order to verify the proposed method,an SLMBA operating at 1.5–2.7 GHz(57%relative bandwidth)is designed.The layout simulation results show that its saturated output powers achieve 40.7–43.7 dBm and the small signal gains are 9.7–12.4 dB.Besides,the drain efficiencies at the saturated point and 10 dB OBO point are 52.7%–73.7%and 44.9%–59.2%respectively.
文摘Energy harvesting(EH)technology is developed with the purpose of harnessing ambient energy in different physical forms.Although the available ambient energy is usually tiny,not comparable to the centralized power generation,it brings out the convenience of onsite power generation by drawing energy from local sources,which meets the emerging pow⁃er demand of long-lasting,extensively-deployed,and maintenance-free Internet of Things(IoT).Kinetic energy harvesting(KEH)is one of the most promising EH solutions toward the realization of battery-free IoT.The KEH-based battery-free IoT can be extensively deployed in the smart home,smart building,and smart city scenarios,enabling perceptivity,intelli⁃gence,and connectivity in many infrastructures.This paper gives a brief introduction to the configurations and basic principles of practical KEH-IoT systems,including their mechani⁃cal,electrical,and computing parts.Although there are already a few commercial products in some specific application markets,the understanding and practice in the co-design and optimization of a single KEH-IoT device are far from mature,let alone the conceived multia⁃gent energy-autonomous intelligent systems.Future research and development of the KEHIoT system beckons for more exchange and collaboration among mechanical,electrical,and computer engineers toward general design guidelines to cope with these interdisciplinary en⁃gineering problems.
基金This work was supported by the National Natural Science Foundation of China under Grant No.91948303.
文摘Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research.
文摘集成电路制造技术的迅速发展已经可以把一个完整的电子系统集成到一个芯片上即所谓的系统级芯片 (Sys tem on Chip ,简称SoC)。传统的设计方法是将硬件和软件分开来设计的 ,在硬件设计完成并生产出样片后才能调试软件。本文介绍了针对于系统级芯片设计的软硬件协同设计技术 (co design)的概念和设计流程 。
基金supported in part by CHN RAILWAY(Grant Number L2021G012)in part by CHN NSFC under(Grant U2268203).
文摘At present,BIM platforms rely on foreign software.Homemade software and industry applications are mostly secondary developments,which present stranglehold problems caused by interruptions to the software supply.To solve the problem,key technical research on the 3D integrated design of railway engineering was stuedied based on homemade graphics engines to propose an innovative railway BIM platform framework.The entire process was completed from the top-level design to the engineering verification of the platform.The co-designed mechanism of a"center model and link"hybrid mode was constructed,which solved the difficulties of data management and increment synchronization at a large scale,achieving teamwork among surveying and mapping,alignments,and bridges.The results of this study could provide strong support for the development of BIM software for a whole railway and all majors.
基金supported by the National Science Foundation of China under Grant No.61771295the Natural Science Young Foundation of Shanxi Province under Grant Nos.2014021021-1 and 2015011042
文摘The filter and antenna are two key components of the radio frequency(RF)front-end.When the antenna is directly connected with the filter,additional mismatch losses will be caused.Therefore,the antenna and filter are integrated into a single device to provide both filtering and radiating functions.In this way,many advantages,like low cost,light weight,small size and lower insertion loss can be obtained.In this paper,the co-design approaches of RF filter-antenna are reviewed.Based on the open literatures,the integrated approaches of filtering antenna can be classified into five main categories:1)Co-design by optimizing the interfacing impedance,2)co-design according to the synthesis approach of filter,3)co-design by embedding novel resonators within the feeding structures,4)co-design by employing auxiliary physical structures,and 5)other methods.The RF filter-antenna system can improve the integration degree of RF frontend,reduce its size and cost,and optimize its performance.