To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ...This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.展开更多
A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,...A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.展开更多
Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner...Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.展开更多
After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Throu...After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.展开更多
In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full ve...In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in equal or less than actual time,the real-time simulation environment is prepared in two stages.To such end,the computational time improved from 4 times slower than real time to 2 times faster than real time.Finally,the real-time scaled bogie model is also incorporated with the braking control system which slightly reduces the computational performances without affecting real-time capability.展开更多
To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits an...To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.展开更多
Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT ...Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.展开更多
In the large-scale distributed hardware-in-the-loop radar simulation system based on HLA, a new solution of processing after acquisition is proposed, which separates the software subsystem from the hardware jammer sub...In the large-scale distributed hardware-in-the-loop radar simulation system based on HLA, a new solution of processing after acquisition is proposed, which separates the software subsystem from the hardware jammer subsystem by a response database, so as to settle the problem, that the software subsystem can not meet the real-time need of the hardware, with very little increment of code. And the data completeness and feasibility of this solution are discussed.展开更多
This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the si...This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the simulation law established here, prototype experiments and model experiments with the simulation ratio of 1.33 are designed, and the penetrating armour experiments with 45 # carbon steel plates are separately conducted. By means of data processing of experimental results, it is concluded that EFP penetrating armour simulation law established is tenable.展开更多
For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the ...For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the basis of simulating theory. The influence of the position of aquifer, the reinforcing scope of aquifer, reinforcing distance and the strength of grouting cemented mixture on the value and variation law of the axial additional force on shaft lining is studied. The relationships between the reinforcing parameters and the axial additional force on shaft lining are obtained, which provides the theoretic foundation and construction design parameters for the method of reinforcing strata by grouting to prevent and cure tbe rupture disaster of shart lining.展开更多
The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China F...The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.展开更多
Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is po...Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading.展开更多
In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three- dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of ther- mal radiation, the change of physic...In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three- dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of ther- mal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the significant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design.展开更多
The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/...The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.展开更多
In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated...In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated in the frequency domain,and the coupled motions are analyzed in the time domain.We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well.The barge exhibits favorable hydrodynamic behavior in the considered sea state,and the equipment loads are allowable.Themooring systemand sway fender forces are within the permissible range.Based on these results,we can verify that the actual installation of the offshore platform is feasible.We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation,which is of great importance.As such,we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance.展开更多
Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To sol...Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To solve the problem,based on the semi-circle bending(SCB)test and the extended finite element(XFEM)theory,the interaction between multi-metal-veins and fractures is investigated.The experimental results reveal that the fractures usually deflect at the upper or lower interfaces between metal veins and rocks(e.g.the specimen S-2),which is different from the propagation behavior of fractures in calcite veins.Meanwhile,the fracture toughness of the specimen S-1 is 24.40%higher than that of the specimen S-2,indicating that the increasing of total thickness of multiple metal veins in-creases the resistance to the fracture vertical propagation.The simulation results show that the increasing of the number,total thickness of veins,the modulus difference between veins and rock,the approach angle and the notch angle all increase the resistance of the fracture passing through metal veins.The maximum deviation distance(Dmax)of the fracture decreases with the number of veins,while thickness combination types of metal veins do not affect Dmax.The reduction of the notch angle leads to the more tortuous fracture propagation path.Finally,we propose a new comprehensive fracture network pattern.Fracture networks are divided into two categories,including orthogonal fracture networks and sub-orthogonal fracture networks,and then divided into six sub-categories further.The research results will provide reference for hydraulic fracturing of shale reservoirs containing multi-metal-veins.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
基金Supported by the Fund from COPC PL19-3 FPSO Project
文摘This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.
基金Supported by the National Natural Science Foundation of China(51475116)。
文摘A manipulator-type docking hardware-in-the-loop(HIL)simulation system is proposed in this paper,with further development of the space docking technology and corresponding requirements of the engineering project.First,the structure of the manipulator-type HIL simulation system is explained.The mass and the flexibility of the manipulator has an important influence on the stability of the HIL system,which is the premise of accurately simulating actual space docking.Thus,the docking HIL simulation models of rigid,flexible and flexible-light space manipulators are established.The characteristics of the three HIL systems are studied from three important aspects:the system parameter configuration relation,the system stability condition and the dynamics frequency simulation ability.The key conclusions obtained were that the system satisfies stability or reproduction accuracy.Meanwhile,the influence of different manipulators on the system stability is further analyzed.The accuracy of the calculated results is verified experimentally.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41204120 and 41304130)the Fundamental Research Funds for the Central Universities(Grant No.2042014kf0251)
文摘Modulated high frequency (HF) heating of the ionosphere provides a feasible means of artificially generating ex- tremely low frequency (ELF)/very low frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high energy electrons. Combining the ray tracing method and test particle simulations, we evaluate the effects of energetic electron resonant scattering driven by the discrete, multi-frequency arti- ficially generated ELF/VLF waves. The simulation results indicate a stochastic behavior of electrons and a linear profile of pitch angle and kinetic energy variations averaged over all test electrons. These features are similar to those associated with single-frequency waves. The computed local diffusion coefficients show that, although the momentum diffusion of relativistic electrons due to artificial ELF/VLF whistlers with a nominal amplitude of ~ 1 pT is minor, the pitch angle scattering can be notably efficient at low pitch angles near the loss cone, which supports the feasibility of artificial triggering of multi-frequency ELF/VLF whistler waves for the removal of high energy electrons from the magnetosphere. We also investigate the dependences of diffusion coefficients on the frequency interval (△f) of the discrete, multi-frequency waves. We find that there is a threshold value of Af for which the net diffusion coefficient of multi-frequency whistlers is inversely proportional to △f (proportional to the frequency components Nw) when △f is below the threshold value but it remains unchanged with increasing Af when △f is larger than the threshold value. This is explained as being due to the fact that the resonant scattering effect of broadband waves is the sum of the effects of each frequency in the 'effective frequency band'. Our results suggest that the modulation frequency of HF heating of the ionosphere can be appropriately selected with reasonable frequency intervals so that better performance of controlled precipitation of high energy electrons in the plasmasphere by artificial ELF/VLF whistler waves can be achieved.
基金the National Natural Science Foundation of China (No. 50104013).
文摘After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.
基金The authors greatly appreciate the financial support from the Rail Manufacturing Cooperative Research Centre(funded jointly by participating rail organizations and the Australian Federal Government’s Business Cooperative Research Centres Program)through Project R1.7.1-“Estimation of adhesion conditions between wheels and rails for the development of advanced braking control systems.”Tim McSweeney,Adjunct Research Fellow,Centre for Railway Engineering is thankfully acknowledged for his assistance with proofreading.
文摘In wheel–rail adhesion studies,most of the test rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in rigs used are simplified designs such as a single wheel or wheelset,but the results may not be accurate.Alternatively,representing the complex system by using a full vehicle model provides accurate results but may incur complexity in design.To trade off accuracy over complexity,a bogie model can be the optimum selection.Furthermore,only a real-time model can replicate its physical counterpart in the time domain.Developing such a model requires broad expertise and appropriate software and hardware.A few published works are available which deal with real-time modeling.However,the influence of the control system has not been included in those works.To address these issues,a real-time scaled bogie test rig including the control system is essential.Therefore,a 1:4 scaled bogie roller rig is developed to study the adhesion between wheel and roller contact.To compare the performances obtained from the scaled bogie test rig and to expand the test applications,a numerical simulation model of that scaled bogie test rig is developed using Gensys multibody software.This model is the complete model of the test rig which delivers more precise results.To exactly represent the physical counterpart system in the time domain,a real-time scaled bogie test rig(RT-SBTR)is developed after four consecutive stages.Then,to simulate the RT-SBTR to solve the internal state equations and functions representing the physical counterpart system in equal or less than actual time,the real-time simulation environment is prepared in two stages.To such end,the computational time improved from 4 times slower than real time to 2 times faster than real time.Finally,the real-time scaled bogie model is also incorporated with the braking control system which slightly reduces the computational performances without affecting real-time capability.
基金Supported by the National Natural Science Foundation of China (61101129)Specialized Research Fund for the Doctoral Program of Higher Education(20091101110019)
文摘To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.
基金supported by the National Basic Research Program of China (No. 2007CB815002)the Fundamental Research Funds for the Central Universities of China (HEUCF101501)Harbin Engineering University of China (002150260713)
文摘Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.
基金the Ministerial Level Advanced Research Foundation
文摘In the large-scale distributed hardware-in-the-loop radar simulation system based on HLA, a new solution of processing after acquisition is proposed, which separates the software subsystem from the hardware jammer subsystem by a response database, so as to settle the problem, that the software subsystem can not meet the real-time need of the hardware, with very little increment of code. And the data completeness and feasibility of this solution are discussed.
文摘This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the simulation law established here, prototype experiments and model experiments with the simulation ratio of 1.33 are designed, and the penetrating armour experiments with 45 # carbon steel plates are separately conducted. By means of data processing of experimental results, it is concluded that EFP penetrating armour simulation law established is tenable.
文摘For preventing and curing the rupture disaster of shaft lining effectively, according to the additional force theory of shaft lining fracture, more than forty tests were carried out on the large scale test rig on the basis of simulating theory. The influence of the position of aquifer, the reinforcing scope of aquifer, reinforcing distance and the strength of grouting cemented mixture on the value and variation law of the axial additional force on shaft lining is studied. The relationships between the reinforcing parameters and the axial additional force on shaft lining are obtained, which provides the theoretic foundation and construction design parameters for the method of reinforcing strata by grouting to prevent and cure tbe rupture disaster of shart lining.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0300500 and 2017YFE0300501)the National Natural Science Foundation of China(Grant Nos.11875290 and 11875253)the Fundamental Research Funds for the Central Universities of China(Grant No.WK3420000004).
文摘The plasma current ramp-up is an important process for tokamak discharge,which directly affects the quality of the plasma and the system resources such as volt-second consumption and plasma current profile.The China Fusion Engineering Test Reactor(CFETR)ramp-up discharge is predicted with the tokamak simulation code(TSC).The main plasma parameters,the plasma configuration evolution and coil current evolution are given out.At the same time,the volt-second consumption during CFETR ramp-up is analyzed for different plasma shaping times and different plasma current ramp rates dIP/dt with/without assisted heating.The results show that the earlier shaping time and the faster plasma current ramp rate with auxiliary heating will enable the volt-second to save 5%-10%.At the same time,the system ability to provide the volt-second is probably 470 V·s.These simulations will give some reference to engineering design for CFETR to some degree.
基金financial support from the National Key R&D Program of China(No.2018YFC0604703)National Natural Science Foundation of China(Nos.51804181,51874190,and 52074168)Key R&D Program of Shandong Province(No.2019GSF111020)。
文摘Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading.
基金supported by National Key Basic Research Program of China (973 Program) (Nos.2015CB251002,6132620303)National Natural Science Foundation of China (Nos.51221005,51377128,51577144)the Fundamental Research Funds for the Central Universities,China
文摘In this paper, to simulate the arc motion in an air circuit breaker (ACB), a three- dimensional magneto-hydrodynamic (MHD) model is developed, considering the influence of ther- mal radiation, the change of physical parameters of arc plasma and the nonlinear characteristic of ferromagnetic material. The distributions of pressure, temperature, gas flow and current density of arc plasma in the arc region are calculated. The simulation results show some phenomena which discourage arc interruption, such as back commutation and arc burning at the back of the splitter plate. To verify the simulation model, the arc motion is studied experimentally. The influences of the material and position of the innermost barrier plate are analyzed mainly. It proved that the model developed in this paper can efficiently simulate the arc motion. The results indicate that the insulation barrier plate close to the top of the splitter plate is conducive to the arc splitting, which leads to the significant increase of the arc voltage, so it is better for arc interruption. The research can provide methods and references to the optimization of ACB design.
文摘The mechanism of stress generation and propagation by detonation loading in five separate independent advance of ore breaking patterns is discussed in the paper. An elastic numerical model was developed using AN- SYS/LS-DYNA 3D Nonlinear Dynamic Finite Element Software. In this package ANSYS is the preprocessor and LS-DYNA is the postprocessor. Numerical models in the paper to actual were l:10 and the element mesh was dissected in scanning mode utilizing the symmetry characteristics of the numerical model. Five different advance rates were studied. Parameters, such as the time required to maximum stress, the action time of the available stress, the maximum velocity of the nodes, the stress penetration time, the magnitude of the stress peak and the time duration for high stress were numerically simulated. The 2.2 m advance appeared optimum from an analysis of the simulation results. The results from numerical simulation have been validated by tests with physical models.
基金supported by Marine Engineering Equipment Scientific Research Project of Ministry of Industry and Information Technology of PRC and the Application of float-over installation simulation in Wangchang Project of CNOOC Technology ProjectThe Fundamental Research Funds for the Central Universities(HEUCF170102)
文摘In this paper,a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation.The hydrodynamic performance of a T-barge is investigated in the frequency domain,and the coupled motions are analyzed in the time domain.We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well.The barge exhibits favorable hydrodynamic behavior in the considered sea state,and the equipment loads are allowable.Themooring systemand sway fender forces are within the permissible range.Based on these results,we can verify that the actual installation of the offshore platform is feasible.We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation,which is of great importance.As such,we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance.
基金support from the China University of Petroleum(Beijing)School for Young Talent Startup Fund(No.ZX20190183).
文摘Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To solve the problem,based on the semi-circle bending(SCB)test and the extended finite element(XFEM)theory,the interaction between multi-metal-veins and fractures is investigated.The experimental results reveal that the fractures usually deflect at the upper or lower interfaces between metal veins and rocks(e.g.the specimen S-2),which is different from the propagation behavior of fractures in calcite veins.Meanwhile,the fracture toughness of the specimen S-1 is 24.40%higher than that of the specimen S-2,indicating that the increasing of total thickness of multiple metal veins in-creases the resistance to the fracture vertical propagation.The simulation results show that the increasing of the number,total thickness of veins,the modulus difference between veins and rock,the approach angle and the notch angle all increase the resistance of the fracture passing through metal veins.The maximum deviation distance(Dmax)of the fracture decreases with the number of veins,while thickness combination types of metal veins do not affect Dmax.The reduction of the notch angle leads to the more tortuous fracture propagation path.Finally,we propose a new comprehensive fracture network pattern.Fracture networks are divided into two categories,including orthogonal fracture networks and sub-orthogonal fracture networks,and then divided into six sub-categories further.The research results will provide reference for hydraulic fracturing of shale reservoirs containing multi-metal-veins.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.