期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
YOLOv7-VSS轻量化橘瓣外观检测模型
1
作者 喻擎苍 邱锐 +2 位作者 傅林杰 谢淼 孙树森 《现代电子技术》 北大核心 2025年第10期85-91,共7页
针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同... 针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。 展开更多
关键词 橘瓣外观检测 YOLOv7 轻量化 EfficientViT GSConv hard-swish MPDIoU
在线阅读 下载PDF
基于Enhanced VGG16的油茶品种分类 被引量:10
2
作者 孟志超 贺磊盈 +4 位作者 杜小强 张国凤 姚小华 吴顺凯 郭豪鉴 《农业工程学报》 EI CAS CSCD 北大核心 2022年第10期176-181,共6页
随着油茶产业不断壮大,市场上也出现了油茶幼苗品系混乱、以假乱真、以次充好的现象,因此急需开发一种专门的分类识别算法实现不同油茶品种的准确识别。农业领域常用VGG、ResNet网络模型进行分类工作,但存在权重空间过大和准确率不高等... 随着油茶产业不断壮大,市场上也出现了油茶幼苗品系混乱、以假乱真、以次充好的现象,因此急需开发一种专门的分类识别算法实现不同油茶品种的准确识别。农业领域常用VGG、ResNet网络模型进行分类工作,但存在权重空间过大和准确率不高等问题。该研究对VGG16网络模型进行层间删减以及结构调整,提出了Enhanced VGG16网络模型,在油茶叶数据集上完成模型训练与测试,并与现有经典卷积神经网络(AlexNet、VGG16、Resnet50、InceptionV3、Xception)进行对比。结果表明,Enhanced VGG16网络模型的训练集准确率和测试集准确率分别为98.98%和98.44%,权重空间为90.6 MB。与原始VGG16模型相比,训练集准确率和测试集准确率分别提高3.08和2.05个百分点,权重空间下降165.4 MB,模型性能显著提升。Enhanced VGG16网络模型与经典卷积神经网络相对比,模型综合性能更优。该研究为通过油茶叶进行品种分类识别提供了依据,同时可为其他农作物品种识别提供参考。 展开更多
关键词 深度学习 油茶叶 分类 Enhanced VGG16 hard-swish ReLU6
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部