In order to deal with the particle degeneracy and impov- erishment problems existed in particle filters, a modified sequential importance resampling (MSIR) filter is proposed. In this filter, the resampling is trans...In order to deal with the particle degeneracy and impov- erishment problems existed in particle filters, a modified sequential importance resampling (MSIR) filter is proposed. In this filter, the resampling is translated into an evolutional process just like the biological evolution. A particle generator is constructed, which introduces the current measurement information (CMI) into the resampled particles. In the evolution, new particles are first pro- duced through the particle generator, each of which is essentially an unbiased estimation of the current true state. Then, new and old particles are recombined for the sake of raising the diversity among the particles. Finally, those particles who have low quality are eliminated. Through the evolution, all the particles retained are regarded as the optimal ones, and these particles are utilized to update the current state. By using the proposed resampling approach, not only the CMI is incorporated into each resampled particle, but also the particle degeneracy and the loss of diver- sity among the particles are mitigated, resulting in the improved estimation accuracy. Simulation results show the superiorities of the proposed filter over the standard sequential importance re- sampling (SIR) filter, auxiliary particle filter and unscented Kalman particle filter.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layer...Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layered Space-Time (BLAST) systems. In the first variant, Markov chain Monte Carlo transition is integrated in the S-RS procedure to increase the diversity of particles with large importance weights. In the second one, all particles are first partitioned into two sets according to their importance weights, and then a double S-RS is introduced to increase the diversity of particles with small importance weights. Simulation results show that both variants can improve the bit error performance efficiently compared with the standard S-P^S with little increased complexity.展开更多
Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuverin...Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuvering platforms.In this paper,a frequency-domain imaging algorithm is proposed based on a novel slant range model and azimuth perturbation resampling.First,a novel slant range model is presented for mitigating the geometric distortion according to the equal squint angle curve on the ground surface.Second,the correction of azimuth-dependent range cell migration(RCM)is achieved by introducing a high-order time-domain perturbation function.Third,an azimuth perturbation resampling method is proposed for azimuth compression.The azimuth resampling and the time-domain perturbation are used for correcting first-order and high-order azimuthal spatial-variant components,respectively.Experimental results illustrate that the proposed algorithm can improve the focusing quality and the geometric distortion correction accuracy of the imaging scene effectively.展开更多
基金supported by the National Natural Science Foundation of China(61372136)
文摘In order to deal with the particle degeneracy and impov- erishment problems existed in particle filters, a modified sequential importance resampling (MSIR) filter is proposed. In this filter, the resampling is translated into an evolutional process just like the biological evolution. A particle generator is constructed, which introduces the current measurement information (CMI) into the resampled particles. In the evolution, new particles are first pro- duced through the particle generator, each of which is essentially an unbiased estimation of the current true state. Then, new and old particles are recombined for the sake of raising the diversity among the particles. Finally, those particles who have low quality are eliminated. Through the evolution, all the particles retained are regarded as the optimal ones, and these particles are utilized to update the current state. By using the proposed resampling approach, not only the CMI is incorporated into each resampled particle, but also the particle degeneracy and the loss of diver- sity among the particles are mitigated, resulting in the improved estimation accuracy. Simulation results show the superiorities of the proposed filter over the standard sequential importance re- sampling (SIR) filter, auxiliary particle filter and unscented Kalman particle filter.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
基金supported by the National Natural Science Foundation of China(6047209860502046U0635003).
文摘Two variants of systematic resampling (S-RS) are proposed to increase the diversity of particles and thereby improve the performance of particle filtering when it is utilized for detection in Bell Laboratories Layered Space-Time (BLAST) systems. In the first variant, Markov chain Monte Carlo transition is integrated in the S-RS procedure to increase the diversity of particles with large importance weights. In the second one, all particles are first partitioned into two sets according to their importance weights, and then a double S-RS is introduced to increase the diversity of particles with small importance weights. Simulation results show that both variants can improve the bit error performance efficiently compared with the standard S-P^S with little increased complexity.
基金supported by the basic research projects of Army Engineering University.
文摘Strong spatial variance of the imaging parameters and serious geometric distortion of the image are induced by the acceleration and vertical velocity in a high-squint synthetic aperture radar(SAR)mounted on maneuvering platforms.In this paper,a frequency-domain imaging algorithm is proposed based on a novel slant range model and azimuth perturbation resampling.First,a novel slant range model is presented for mitigating the geometric distortion according to the equal squint angle curve on the ground surface.Second,the correction of azimuth-dependent range cell migration(RCM)is achieved by introducing a high-order time-domain perturbation function.Third,an azimuth perturbation resampling method is proposed for azimuth compression.The azimuth resampling and the time-domain perturbation are used for correcting first-order and high-order azimuthal spatial-variant components,respectively.Experimental results illustrate that the proposed algorithm can improve the focusing quality and the geometric distortion correction accuracy of the imaging scene effectively.