The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-...This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient co...This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.展开更多
The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was contin...The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.展开更多
A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state fee...A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.展开更多
Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its trans...Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages that each node sends out periodically. Several beaconless greedy routing schemes have been proposed recently. However, none of the existing beaconless schemes guarantee the delivery of packets. Moreover, they incur communication overhead by sending excessive control messages or by broadcasting data packets. In this paper, we describe how existing localized position based routing schemes that guarantee delivery can be made beaconless, while preserving the same routes. In our guaranteed delivery beaconless routing scheme, the next hop is selected through the use of control RTS/CTS messages and biased timeouts. In greedy mode, the neighbor closest to destination responds first. In recovery mode, nodes closer to the source will select shorter timeouts, so that other neighbors, overhearing CTS packets, can eliminate their own CTS packets if they realize that their link to the source is not part of Gabriel graph. Nodes also cancel their packets after receiving data message sent by source to the selected neighbor. We analyze the behavior of our scheme on our simulation environment assuming ideal MAC, following GOAFR+ and GFG routing schemes. Our results demonstrate low communication overhead in addition to guaranteed delivery.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time...An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ...The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.展开更多
The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning ...The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.展开更多
The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent...The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent stability criterion is formulated as the feasibility problem of the linear matrix inequality (LMI). The criterion is proved theoretically to be less conservative than some existing results for linear time-delay systems. Because of the fact that the matrices in the LMI-based stability criteria usually have different dimensions, different structures, and different variables, the conservatism analysis of the criteria is difficult. This study brings about a new insight into the comparison of conservatism among different stability criteria, which are expressed in certain LMI forms. The existence of the guaranteed cost controller is given in terms of matrix inequalities. The condition can be solved by using an iterative procedure and does not need any parameter tuning. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
Aimed at designing the unpower aerocraft attitude control system in a simple and practical way, the guaranteed cost control is adopted. To eliminate the steady-error, a novel tracking control approach--augmented state...Aimed at designing the unpower aerocraft attitude control system in a simple and practical way, the guaranteed cost control is adopted. To eliminate the steady-error, a novel tracking control approach--augmented state feedback tracking guaranteed cost control is proposed. Firstly, the unpower aerocraft is modeled as a linear system with norm bounded parameter uncertain, then the linear matrix inequality based state feedback guaranteed cost control law is combined with the augmented state feedback tracking control from a new point of view. The sufficient condition of the existence of the augmented state feedback tracking guaranteed cost control is derived and converted to the feasible problem of the linear matrix inequality. Finally, the proposed approach is applied to a specified unpower aerocraft. The six dimensions of freedom simulation results show that the proposed approach is effective and feasible.展开更多
This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal...This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal guaranteed cost controller is proposed to stabilize system attitude and damp the vibration of the flexible beam at the same time. Numerical simulation examples show the feasibility and validity of the proposed method.展开更多
The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. Th...The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.展开更多
The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In ...The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In this paper the differences between guaranteed rate method and guaranteed rate-frequency method on the fundamental concept of guaranteed rate and the calculated result are carried out.According to the theoreti- cal expression forms of the two methods,the reason leading to the difference is an...展开更多
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2006A13)the Foundation of Research Project of Educational Department of Shaanxi Province (06JK149).
文摘This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
基金supported by the National Natural Science Foundation of China(60374015)
文摘This paper focuses on the problem of non-fragile guaranteed cost control for a class of T-S discrete-time fuzzy bilinear systems(DFBS).Based on the parallel distributed compensation(PDC) approach,the sufficient conditions are derived such that the closed-loop system is asymptotically stable and the cost function value is no more than a certain upper bound in the presence of the additive controller gain perturbations.The non-fragile guaranteed cost controller can be obtained by solving a set of bilinear matrix inequalities(BMIs).The Van de Vusse model is utilized to demonstrate the validity and effectiveness of the proposed approach.
基金Project(61104106) supported by the National Natural Science Foundation of ChinaProject(201202156) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100) supported by Program for Liaoning Excellent Talents in University(LNET)
文摘The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.
基金This project was supported by a Program for Changjiang Scholars and an Innovative Research Team in the University and the National Natural Science Foundation of P. R. China (60474015).
文摘A guaranteed cost control problem for a class of linear discrete-time switched systems with norm-bounded uncertainties is considered in this article. The purpose is to construct a switching rule and design a state feedback control law, such that, the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties under the constructed switching rule. A sufficient condition for the existence of guaranteed cost controllers and switching rules is derived based on the Lyapunov theory together with the linear matrix inequality (LMI) approach. Furthermore, a convex optimization problem with LMI constraints is formulated to select the suboptimal guaranteed cost controller. A numerical example demonstrates the validity of the proposed design approach.
基金Supported by Natural Sciences and Engineering Research Council, Collaborative Research and Development Grant (319848) of Canada
文摘Existing position-based routing algorithms, where packets are forwarded in the geographic direction of the destination, normally require that the forwarding node should know the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages that each node sends out periodically. Several beaconless greedy routing schemes have been proposed recently. However, none of the existing beaconless schemes guarantee the delivery of packets. Moreover, they incur communication overhead by sending excessive control messages or by broadcasting data packets. In this paper, we describe how existing localized position based routing schemes that guarantee delivery can be made beaconless, while preserving the same routes. In our guaranteed delivery beaconless routing scheme, the next hop is selected through the use of control RTS/CTS messages and biased timeouts. In greedy mode, the neighbor closest to destination responds first. In recovery mode, nodes closer to the source will select shorter timeouts, so that other neighbors, overhearing CTS packets, can eliminate their own CTS packets if they realize that their link to the source is not part of Gabriel graph. Nodes also cancel their packets after receiving data message sent by source to the selected neighbor. We analyze the behavior of our scheme on our simulation environment assuming ideal MAC, following GOAFR+ and GFG routing schemes. Our results demonstrate low communication overhead in addition to guaranteed delivery.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金supported by the National Natural Science Foundation of China(61573129 U1804147)+2 种基金the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2 T2017-1)
文摘An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
基金supported by the NSFC-Guangdong Joint Foundation Key Project(U0735003)the Overseas Cooperation Foundation(60828006)+1 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(2009ZM0076)the Natural Science Foundation of Guangdong Province(06105413)
文摘The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.
文摘The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.
基金the National Science Foundation for Distinguished Youth Scholars of China(60525304)the Natural Science Foundation of Zhejiang Province (Y107657).
文摘The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent stability criterion is formulated as the feasibility problem of the linear matrix inequality (LMI). The criterion is proved theoretically to be less conservative than some existing results for linear time-delay systems. Because of the fact that the matrices in the LMI-based stability criteria usually have different dimensions, different structures, and different variables, the conservatism analysis of the criteria is difficult. This study brings about a new insight into the comparison of conservatism among different stability criteria, which are expressed in certain LMI forms. The existence of the guaranteed cost controller is given in terms of matrix inequalities. The condition can be solved by using an iterative procedure and does not need any parameter tuning. A numerical example is given to illustrate the effectiveness of the proposed method.
基金the Spaceflight Innovation Foundation (20060115)the National Natural Science Foundation(60674105)
文摘Aimed at designing the unpower aerocraft attitude control system in a simple and practical way, the guaranteed cost control is adopted. To eliminate the steady-error, a novel tracking control approach--augmented state feedback tracking guaranteed cost control is proposed. Firstly, the unpower aerocraft is modeled as a linear system with norm bounded parameter uncertain, then the linear matrix inequality based state feedback guaranteed cost control law is combined with the augmented state feedback tracking control from a new point of view. The sufficient condition of the existence of the augmented state feedback tracking guaranteed cost control is derived and converted to the feasible problem of the linear matrix inequality. Finally, the proposed approach is applied to a specified unpower aerocraft. The six dimensions of freedom simulation results show that the proposed approach is effective and feasible.
基金the National Natural Science Foundation of China (60574022)
文摘This article is concerned with the modeling and control problems of the flexible spacecraft. First, the state observer is designed to estimate the vibration mode on the basis of free vibration models, Then, an optimal guaranteed cost controller is proposed to stabilize system attitude and damp the vibration of the flexible beam at the same time. Numerical simulation examples show the feasibility and validity of the proposed method.
文摘The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.
基金Supported by the National Key Basic Resarch and Development Plan (Grant 2003CB415200)
文摘The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In this paper the differences between guaranteed rate method and guaranteed rate-frequency method on the fundamental concept of guaranteed rate and the calculated result are carried out.According to the theoreti- cal expression forms of the two methods,the reason leading to the difference is an...
基金Supported by the National Natural Science Foundation of China under Grant No.60233020(国家自然科学基金)the National High-Tech Ressearch and Development Plan of China under Grant No.2006AA01Z429(国家高技术研究发展计划(863))the Program for New Century Excellent Talents in University under Grant No.NCET-04-0996(新世纪优秀人才支持计划)