Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dyna...Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.展开更多
One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish au...One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.展开更多
To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity ...To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.展开更多
A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conduc...A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.展开更多
基金Project(2023JBZY030)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1834208)supported by the National Natural Science Foundation of China。
文摘Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.
基金Project(2007AA01Z224) supported by National High-Tech Research and Development Program of China
文摘To deploy sensor nodes over the area of interest,a scheme,named node scattering manipulation,was proposed.It adopted the following method:during node scattering,the initial states of every node,including the velocity and direction,were manipulated so that it would land in a region with a certain probability;every sensor was relocated in order to improve the coverage and connectivity.Simultaneously,to easily analyze the process of scattering sensors,a trajectory model was also proposed.Integrating node scattering manipulation with trajectory model,the node deployment in wireless sensor network was thoroughly renovated,that is,this scheme can scatter sensors.In practice,the scheme was operable compared with the previous achievements.The simulation results demonstrate the superiority and feasibility of the scheme,and also show that the energy consumption for sensors relocation is reduced.
基金Project(10672151) supported by the National Natural Science Foundation of China
文摘A simple one-dimensional planar model for ejection was set up based on experiments.And numerical simulation was performed on this model with particle trajectory model method.An Eulerian finite volume method was conducted to resolve gas field.And Lagrangian method was imposed to track each particle.The interaction between gas and particles was responded as source terms in governing equations which were induced by forces.The effects of total spraying mass,particle size and other factors on the mixture of particles and gas were investigated.The spatial distributions of particle mass and velocity at different time were presented.The result shows that the numerical results are qualitatively consistent to those of experiments.