Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ...Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.展开更多
【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI...【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI)数据集进行预处理。其次,基于预处理后的功能磁共振数据,构建5个不同尺度的脑网络模型并计算拓扑属性提取特征。基于提取的特征,利用组套索方法构建超图,利用超图正则化特征选择方法进行特征选择。最后,使用支持向量机构建分类模型并评估分类性能。此外,还在UCI数据集中验证了所提方法的有效性。【结果】所提方法在5个不同节点定义模板下,均高于传统的特征选择方法。此外,在模板的节点数量相似的情况下,此方法有更高的分类诊断性能。展开更多
基金Project(2019JJ40047)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(kq2014057)supported by the Changsha Municipal Natural Science Foundation,China。
文摘Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations.
文摘【目的】抑郁症分类诊断研究中,特征选择扮演了重要角色。【方法】针对现有超图正则化特征选择缺失组效应信息问题,提出基于组套索的超图正则化特征选择方法。首先,对抑郁症功能磁共振影像(functional magnetic resonance imaging,fMRI)数据集进行预处理。其次,基于预处理后的功能磁共振数据,构建5个不同尺度的脑网络模型并计算拓扑属性提取特征。基于提取的特征,利用组套索方法构建超图,利用超图正则化特征选择方法进行特征选择。最后,使用支持向量机构建分类模型并评估分类性能。此外,还在UCI数据集中验证了所提方法的有效性。【结果】所提方法在5个不同节点定义模板下,均高于传统的特征选择方法。此外,在模板的节点数量相似的情况下,此方法有更高的分类诊断性能。