A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the eva...A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.展开更多
An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of ...An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of the landfill, permeability of the stratum, the average difference in elevation between the groundwater level and the bottom of the landfill pit, quality and source of clay, the quality grade of the landfill site, the effect of landfill engineering on nearby residents, distance to the water supply and the water source as well as the cost of construction and waste transport. These are determined, given the conditions of the geological environment, the need for environmental protection and landfill site construction and transportation related to the design and operation of a sanitary landfill. The weights of the eight factors were further investigated based on the difference in their relevance. Combined with practical experience from Xuzhou city (Jiangsu province, China), the objectives, effects and weights of grey decision-making were deter- mined and the process and outcome of the landfill site selection are stated in detail. The decision-making results have been proven to be acceptable and correct. As we show, unequal-weighted multi-objective grey situation decision-mak- ing is characterized by easy calculations and good maneuverability when used in landfill site selection. The number of factors (objectives) affecting the outcome and the quantitative method of qualitative indices can be adjusted on the basis of concrete conditions in landfill site selection. Therefore, unequal-weighted multi-objective grey situation decision making is a feasible method in selecting landfill sites which offers a reference method for landfill site selection else- where. It is a useful, rational and scientific exploration in the choice of`a landfill site.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization m...A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.展开更多
Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the correspon...Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.展开更多
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .60 1 340 1 0 )
文摘A new fuzzification method for multi-objective decision-making and selective sorting is proposed on the basis of the fuzzy consistent relation, and the specific algorithm is presented. The method is applied to the evaluation of highway planning of Zhanjiang city. To decrease the subjectivity in the process of decision-making, the LOWA operator is introduced, and a discussion on how to select appropriate weights involved in multi-objective sorting is made. It is concluded that it is feasible to apply the fuzzy consistent relation to multi-objective decision-making analysis, and the improved fuzzication method is workable.
基金Projects 40372069 supported by the National Natural Science Foundation of China, NCET-05-0479 by the Support Program of Excellent Ability in the NewEra of Ministry of Education and 0F4506 by the Science and Technology Foundation of China University of Mining & Technology
文摘An application of an unequal-weighted multi-objective decision making method in site selection of a waste sanitary landfill is discussed. The eight factors, which affected possible options, were: size and capacity of the landfill, permeability of the stratum, the average difference in elevation between the groundwater level and the bottom of the landfill pit, quality and source of clay, the quality grade of the landfill site, the effect of landfill engineering on nearby residents, distance to the water supply and the water source as well as the cost of construction and waste transport. These are determined, given the conditions of the geological environment, the need for environmental protection and landfill site construction and transportation related to the design and operation of a sanitary landfill. The weights of the eight factors were further investigated based on the difference in their relevance. Combined with practical experience from Xuzhou city (Jiangsu province, China), the objectives, effects and weights of grey decision-making were deter- mined and the process and outcome of the landfill site selection are stated in detail. The decision-making results have been proven to be acceptable and correct. As we show, unequal-weighted multi-objective grey situation decision-mak- ing is characterized by easy calculations and good maneuverability when used in landfill site selection. The number of factors (objectives) affecting the outcome and the quantitative method of qualitative indices can be adjusted on the basis of concrete conditions in landfill site selection. Therefore, unequal-weighted multi-objective grey situation decision making is a feasible method in selecting landfill sites which offers a reference method for landfill site selection else- where. It is a useful, rational and scientific exploration in the choice of`a landfill site.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金Sponsored by the National Natural Science Foundation of China (70471063)
文摘A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.
基金The Project of Shaanxi Provincial Natural Science Foundation of China (No.2004A05)the Project of Science and Research Foundation of Education Committee of Shaanxi Province (No.06JK324)
文摘Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.