Taking different forests in Aershan of Inner Mongolia as sample plots, diversity and dominant species of arthropods were studied. The results show that two classes, 17 orders, 68 families, 130 species and 3742 individ...Taking different forests in Aershan of Inner Mongolia as sample plots, diversity and dominant species of arthropods were studied. The results show that two classes, 17 orders, 68 families, 130 species and 3742 individuals were identified and 92.31% of total species appeared in natural forests, and 75.38% of total species appeared in plantations. The orders of Lepidoptera, Coleoptera, Diptera and Hymenoptera covered most of the collected arthropods. In different forest types, diversity indices is natural mixed forests (Betula platyphylla x Larix gmelinii)〉 natural pure B. platyphylla forests〉natural pure L. gmelinii forests〉plantations with pesticide treatment〉plantations without pesticide treatment. In natural forests, more than 70% of the arthropod families, species and individuals were distributed in shrub and herb layer, while in plantations 75% of the arthropod families, 78% of species and 80% of individuals were also distributed in shrub and herb layer. Lepidoptera, including Loxostege sticticalis (Linnaeus), Chilo suppressalis (Walker) and Lymantria dispar (Linnaeus), had the highest dominant degree.展开更多
Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace ha...Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.展开更多
Arthropod communities and epiphytic plants associated with tree canopies have been widely studied and have revealed a great diversity of organisms; however,the community hosted by parasitic plants,such as dwarf mistle...Arthropod communities and epiphytic plants associated with tree canopies have been widely studied and have revealed a great diversity of organisms; however,the community hosted by parasitic plants,such as dwarf mistletoes,remains poorly known.In the coniferous forests of North America,dwarf mistletoe infection(Arceuthobium spp.) significantly damages the health of the forest,causing large financial losses for the forest industry,but it also positively affects diversity,especially of mammals and birds.This study examined the attributes of the arthropod communities associated with two species of dwarf mistletoe [Arceuthobium globosum Hawksw.& Wiens and A.vaginatum(Humb.& Bonpl.ex Willd.) J.Presl] and their host Pinus hartwegii Lindl.In 2010,in five sites located in Zoquiapan(Central Mexico),we collected plant tissue from the three species bimonthly.Arthropods were separated from the plant tissue and identified to the finest level possible.We collected 32,059 individuals,for which51 morphospecies were identified,belonging to 15 taxonomic orders; the most abundant orders for the three plants were Prostigmata,Thysanoptera and Homoptera.The community associated with P.hartwegii had the highest value of diversity(H'= 1.47; A.globosum,H'= 0.64; A.vaginatum,H'= 0.68) and species richness(S = 40; A.globosum,S = 30; A.vaginatum,S = 35); while abundance was significantly higher for the mistletoes(A.globosum,n = 407 individuals/sample; A.vaginatum,n = 536 individuals/sample; P.hartwegii,n = 134 individuals/sample).Species richness,abundance and diversity were significantly different for the three studied plants,as well for sampling month and the interaction of these two factors(except for diversity).The results suggest that the canopy of P.hartwegii is an important element in the ecosystem,providing a mosaic of resources and conditions to the associated fauna.We also propose that mistletoes are key species within the forest canopy,as they greatly influence the establishment of diverse organisms,particularly arthropods.展开更多
The invasion of Bursaphelenchus xylophilus (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacks Masson pine (Pinus massoniana) forests and causes great economic losses in China. In this...The invasion of Bursaphelenchus xylophilus (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacks Masson pine (Pinus massoniana) forests and causes great economic losses in China. In this study, we assessed whether the effect of the invasion of PWN is different between island and inland forests. Arthropods were sampled in Fuyang (inland) and Zhoushan (island) counties in Zhejiang Province with sweep netting and light traps at four plots. During two field periods (May to June 2004 and September to October 2005) a total of 21,916 insects, representing 384 species belonging to 99 families and 15 orders, were collected in the sample plots from the island, whereas, from the inland forest a total of 29,262 insects, representing 308 species belonging to 96 families and 13 orders, were found. A hierarchical cluster analysis (HCA) and one-way ANOVA, based on the composition of different arthropod guilds, were performed. The results showed that there was no significant difference in the composition of arthropod communities at the family level between inland and island. But these two habitats had a significant effect on the composition of species, individuals, sub-communities and energy class levels. Statistically, the composition of the two orders, Lepidoptera and Diptera, in the two habitats were significantly different.展开更多
Litter decomposition is key to ecosystem carbon(C)and nutrient cycling,but this process is anticipated to weaken due to projected more extensive and prolonged drought.Yet how litter quality and decomposer community co...Litter decomposition is key to ecosystem carbon(C)and nutrient cycling,but this process is anticipated to weaken due to projected more extensive and prolonged drought.Yet how litter quality and decomposer community complexity regulate decomposition in response to drought is less understood.Here,in a five-year manipulative drought experiment in a Masson pine forest,leaf litter from four subtropical tree species(Quercus griffthii Hook.f.&Thomson ex Miq.,Acacia mangium Willd.,Pinus massoniana Lamb.,Castanopsis hystrix Miq.)representing different qualities was decomposed for 350 d in litterbags of three different mesh sizes(i.e.,0.05,1,and 5 mm),respectively,under natural conditions and a 50%throughfall rain exclusion treatment.Litterbags of increasing mesh sizes discriminate decomposer communities(i.e.,microorganisms,microorganisms and mesofauna,microorganisms and meso-and macrofauna)that access the litter and represent an increasing complexity.The amount of litter C and nitrogen(N)loss,and changes in their ratio(C/N_(loss)),as well as small and medium-sized decomposers including microorganisms,nematodes,and arthropods,were investigated.We found that drought did not affect C and N loss but decreased C/N_(loss)(i.e.,decomposer N use efficiency)of leaf litter irrespective of litter quality and decomposer complexity.However,changes in the C/N_(loss)and the drought effect on C loss were both dependent on litter quality,while drought and decomposer complexity interactively affected litter C and N loss.Increasing decomposer community complexity enhanced litter decomposition and allowing additional access of meso-and macro-fauna to litterbags mitigated the negative drought effect on the microbial-driven decomposition.Furthermore,both the increased diversity and altered trophic structure of nematode due to drought contributed to the mitigation effects via cascading interactions.Our results show that litter quality and soil decomposer community complexity co-drive the effect of drought on litter decomposition.This experimental finding provides a new insight into the mechanisms controlling forest floor C and nutrient cycling under future global change scenarios.展开更多
基金supported by Biodiversity and Forest Pest Problems in Northeast China (BIOPROC)a cooperative project between Beijing Forestry University and Helsinki Universitythe Program for Changjiang Scholars and Innovative Research Team in Universities (PCSIRT0607)
文摘Taking different forests in Aershan of Inner Mongolia as sample plots, diversity and dominant species of arthropods were studied. The results show that two classes, 17 orders, 68 families, 130 species and 3742 individuals were identified and 92.31% of total species appeared in natural forests, and 75.38% of total species appeared in plantations. The orders of Lepidoptera, Coleoptera, Diptera and Hymenoptera covered most of the collected arthropods. In different forest types, diversity indices is natural mixed forests (Betula platyphylla x Larix gmelinii)〉 natural pure B. platyphylla forests〉natural pure L. gmelinii forests〉plantations with pesticide treatment〉plantations without pesticide treatment. In natural forests, more than 70% of the arthropod families, species and individuals were distributed in shrub and herb layer, while in plantations 75% of the arthropod families, 78% of species and 80% of individuals were also distributed in shrub and herb layer. Lepidoptera, including Loxostege sticticalis (Linnaeus), Chilo suppressalis (Walker) and Lymantria dispar (Linnaeus), had the highest dominant degree.
文摘Tropical forests provide several ecosystem services and functions and support approximately two-thirds of the world’s biodiversity but are seriously threatened by deforestation.Approaches to counteract this menace have revolved around aff orestation with several or a single tree species.We thus investigated how plantation forests with either a single or several tree species infl uenced arthropod taxonomic and community composition using pitfall traps to sample selected groups of epigeal arthropods(Araneae,Coleoptera,Orthoptera and Hymenoptera)and with environmental variables assessed simultaneously.Our results revealed 54 taxonomic groups with signifi cantly higher taxonomic richness,activity density,and diversity in the mixed stands than in the monoculture stands.The significant differences in community composition were mainly driven by families including Lycosidae,Formicidae,Staphylinidae,Scotylidae,Hydrophilidae,Gryllidae and Scarabaeidae and were explained by distinct habitat characteristics(canopy openness,litter depth,deadwood volume,and tree height).While the diverse tree communities and heterogeneous vegetation structure off ered food and habitat resources for diverse arthropod groups,the allelopathic nature coupled with homogenous stand characteristics of the Tectona grandis stands in the monoculture suppressed the growth of understorey vegetation that could otherwise serve as food and habitat resources for arthropods,which might have led to limited activities and diversity of arthropods in the monoculture plantation stands.The fi ndings thus highlight the need to promote mixed tree plantations in degraded tropical areas,especially when restoring biodiversity is the prime management focus.
基金supported by UNAM-DGAPAPAPIIT IN220912 Grant to ZC-S
文摘Arthropod communities and epiphytic plants associated with tree canopies have been widely studied and have revealed a great diversity of organisms; however,the community hosted by parasitic plants,such as dwarf mistletoes,remains poorly known.In the coniferous forests of North America,dwarf mistletoe infection(Arceuthobium spp.) significantly damages the health of the forest,causing large financial losses for the forest industry,but it also positively affects diversity,especially of mammals and birds.This study examined the attributes of the arthropod communities associated with two species of dwarf mistletoe [Arceuthobium globosum Hawksw.& Wiens and A.vaginatum(Humb.& Bonpl.ex Willd.) J.Presl] and their host Pinus hartwegii Lindl.In 2010,in five sites located in Zoquiapan(Central Mexico),we collected plant tissue from the three species bimonthly.Arthropods were separated from the plant tissue and identified to the finest level possible.We collected 32,059 individuals,for which51 morphospecies were identified,belonging to 15 taxonomic orders; the most abundant orders for the three plants were Prostigmata,Thysanoptera and Homoptera.The community associated with P.hartwegii had the highest value of diversity(H'= 1.47; A.globosum,H'= 0.64; A.vaginatum,H'= 0.68) and species richness(S = 40; A.globosum,S = 30; A.vaginatum,S = 35); while abundance was significantly higher for the mistletoes(A.globosum,n = 407 individuals/sample; A.vaginatum,n = 536 individuals/sample; P.hartwegii,n = 134 individuals/sample).Species richness,abundance and diversity were significantly different for the three studied plants,as well for sampling month and the interaction of these two factors(except for diversity).The results suggest that the canopy of P.hartwegii is an important element in the ecosystem,providing a mosaic of resources and conditions to the associated fauna.We also propose that mistletoes are key species within the forest canopy,as they greatly influence the establishment of diverse organisms,particularly arthropods.
文摘The invasion of Bursaphelenchus xylophilus (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacks Masson pine (Pinus massoniana) forests and causes great economic losses in China. In this study, we assessed whether the effect of the invasion of PWN is different between island and inland forests. Arthropods were sampled in Fuyang (inland) and Zhoushan (island) counties in Zhejiang Province with sweep netting and light traps at four plots. During two field periods (May to June 2004 and September to October 2005) a total of 21,916 insects, representing 384 species belonging to 99 families and 15 orders, were collected in the sample plots from the island, whereas, from the inland forest a total of 29,262 insects, representing 308 species belonging to 96 families and 13 orders, were found. A hierarchical cluster analysis (HCA) and one-way ANOVA, based on the composition of different arthropod guilds, were performed. The results showed that there was no significant difference in the composition of arthropod communities at the family level between inland and island. But these two habitats had a significant effect on the composition of species, individuals, sub-communities and energy class levels. Statistically, the composition of the two orders, Lepidoptera and Diptera, in the two habitats were significantly different.
基金jointly funded by the National Natural Science Foundation of China(No.31930078)the National Key R&D Program of China(No.2021YFD2200405)+3 种基金Science and Technology Cooperation Projects between governments of China and the European Union(No.2023YFE0105100)the Fundamental Research Funds for ICBR(No.1632021023)Sanya Research Base of ICBR(No.1630032023002)the Scientific and Technological Innovation Team for Qinghai-Tibetan Plateau Research in Southwest Minzu University(No.2024CXTD10)。
文摘Litter decomposition is key to ecosystem carbon(C)and nutrient cycling,but this process is anticipated to weaken due to projected more extensive and prolonged drought.Yet how litter quality and decomposer community complexity regulate decomposition in response to drought is less understood.Here,in a five-year manipulative drought experiment in a Masson pine forest,leaf litter from four subtropical tree species(Quercus griffthii Hook.f.&Thomson ex Miq.,Acacia mangium Willd.,Pinus massoniana Lamb.,Castanopsis hystrix Miq.)representing different qualities was decomposed for 350 d in litterbags of three different mesh sizes(i.e.,0.05,1,and 5 mm),respectively,under natural conditions and a 50%throughfall rain exclusion treatment.Litterbags of increasing mesh sizes discriminate decomposer communities(i.e.,microorganisms,microorganisms and mesofauna,microorganisms and meso-and macrofauna)that access the litter and represent an increasing complexity.The amount of litter C and nitrogen(N)loss,and changes in their ratio(C/N_(loss)),as well as small and medium-sized decomposers including microorganisms,nematodes,and arthropods,were investigated.We found that drought did not affect C and N loss but decreased C/N_(loss)(i.e.,decomposer N use efficiency)of leaf litter irrespective of litter quality and decomposer complexity.However,changes in the C/N_(loss)and the drought effect on C loss were both dependent on litter quality,while drought and decomposer complexity interactively affected litter C and N loss.Increasing decomposer community complexity enhanced litter decomposition and allowing additional access of meso-and macro-fauna to litterbags mitigated the negative drought effect on the microbial-driven decomposition.Furthermore,both the increased diversity and altered trophic structure of nematode due to drought contributed to the mitigation effects via cascading interactions.Our results show that litter quality and soil decomposer community complexity co-drive the effect of drought on litter decomposition.This experimental finding provides a new insight into the mechanisms controlling forest floor C and nutrient cycling under future global change scenarios.