期刊文献+
共找到14,736篇文章
< 1 2 250 >
每页显示 20 50 100
HIET:Hybrid Information Enhancement Transformer Network for Single-Photon Image Reconstruction
1
作者 Yiming Liu Xuri Yao +2 位作者 Tao Zhang Yifei Sun Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期1-17,共17页
Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face sev... Single-photon sensors are novel devices with extremely high single-photon sensitivity and temporal resolution.However,these advantages also make them highly susceptible to noise.Moreover,single-photon cameras face severe quantization as low as 1 bit/frame.These factors make it a daunting task to recover high-quality scene information from noisy single-photon data.Most current image reconstruction methods for single-photon data are mathematical approaches,which limits information utilization and algorithm performance.In this work,we propose a hybrid information enhancement model which can significantly enhance the efficiency of information utilization by leveraging attention mechanisms from both spatial and channel branches.Furthermore,we introduce a structural feature enhance module for the FFN of the transformer,which explicitly improves the model's ability to extract and enhance high-frequency structural information through two symmetric convolution branches.Additionally,we propose a single-photon data simulation pipeline based on RAW images to address the challenge of the lack of single-photon datasets.Experimental results show that the proposed method outperforms state-of-the-art methods in various noise levels and exhibits a more efficient capability for recovering high-frequency structures and extracting information. 展开更多
关键词 single-photon images hybrid information enhancement structual feature enhancement data simulation pipeline
在线阅读 下载PDF
Utilizing electronic assisted enhancement:An innovative approach for studying the thermal decomposition and combustion of ionic liquids
2
作者 Cailing Zhang Yutao Wang +5 位作者 Baiquan Chen Zhenguo Pang Hongqi Nie Quan Zhu Peijin Liu Wei He 《Defence Technology(防务技术)》 2025年第2期179-189,共11页
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact... Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process. 展开更多
关键词 Flammable ionic liquids Kinetic methods Electron assisted enhanced thermal decomposition Electron assisted enhanced combustion
在线阅读 下载PDF
Yielding performance of compact yielding anchor cable in working state:Analytical theory and experimental evaluation of yielding resistance enhancement effect
3
作者 Zhenyu Wang Bo Wang +2 位作者 Xinxin Guo Jinjin Li Zhenwang Ma 《International Journal of Mining Science and Technology》 2025年第1期101-120,共20页
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ... To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters. 展开更多
关键词 Compact yielding anchor cables Working state Yielding resistance enhancement effect Yielding mechanical performance Pull-out test
在线阅读 下载PDF
Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
4
作者 Tao Liu Miao-Ling Lin +4 位作者 Da Meng Xin Cong Qiang Kan Jiang-Bin Wu Ping-Heng Tan 《Chinese Physics B》 2025年第1期180-187,共8页
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the... Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices. 展开更多
关键词 polarized Raman spectroscopy EDGE enhanced Raman scattering spatial translational symmetry breaking electromagnetic field redistribution finite-difference time-domain simulation
在线阅读 下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
5
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling PLASMON EXCITON Rabi splitting
在线阅读 下载PDF
Non-dimensional analysis on blast wave propagation in foam concrete:Minimum thickness to avoid stress enhancement 被引量:1
6
作者 Ya Yang Xiangzhen Kong Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期30-46,共17页
Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress miti... Foam concrete is a prospective material in defense engineering to protect structures due to its high energy absorption capability resulted from the long plateau stage.However,stress enhancement rather than stress mitigation may happen when foam concrete is used as sacrificial claddings placed in the path of an incoming blast load.To investigate this interesting phenomenon,a one-dimensional difference model for blast wave propagation in foam concrete is firstly proposed and numerically solved by improving the second-order Godunov method.The difference model and numerical algorithm are validated against experimental results including both the stress mitigation and the stress enhancement.The difference model is then used to numerically analyze the blast wave propagation and deformation of material in which the effects of blast loads,stress-strain relation and length of foam concrete are considered.In particular,the concept of minimum thickness of foam concrete to avoid stress enhancement is proposed.Finally,non-dimensional analysis on the minimum thickness is conducted and an empirical formula is proposed by curve-fitting the numerical data,which can provide a reference for the application of foam concrete in defense engineering. 展开更多
关键词 Foam concrete Blast wave propagation Non-dimensional analysis Stress enhancement
在线阅读 下载PDF
Synergistic enhancement of cathode/anode interfaces with high water-retentive organohydrogel enabling highly stable zinc ion batteries
7
作者 Xixi Zhang Qingxiu Yu +8 位作者 Guangmeng Qu Xiaoke Wang Chuanlin Li Chenggang Wang Na Li Jinzhao Huang Cuiping Han Hongfei Li Xijin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期670-679,共10页
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern... Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices. 展开更多
关键词 enhanced water-retentive Organohydrogel electrolyte Stable Zn||MnO+2 batteries enhancement of cathode/anode interfaces
在线阅读 下载PDF
A Novel Multi-Stream Fusion Network for Underwater Image Enhancement
8
作者 Guijin Tang Lian Duan +1 位作者 Haitao Zhao Feng Liu 《China Communications》 SCIE CSCD 2024年第2期166-182,共17页
Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color... Due to the selective absorption of light and the existence of a large number of floating media in sea water, underwater images often suffer from color casts and detail blurs. It is therefore necessary to perform color correction and detail restoration. However,the existing enhancement algorithms cannot achieve the desired results. In order to solve the above problems, this paper proposes a multi-stream feature fusion network. First, an underwater image is preprocessed to obtain potential information from the illumination stream, color stream and structure stream by histogram equalization with contrast limitation, gamma correction and white balance, respectively. Next, these three streams and the original raw stream are sent to the residual blocks to extract the features. The features will be subsequently fused. It can enhance feature representation in underwater images. In the meantime, a composite loss function including three terms is used to ensure the quality of the enhanced image from the three aspects of color balance, structure preservation and image smoothness. Therefore, the enhanced image is more in line with human visual perception.Finally, the effectiveness of the proposed method is verified by comparison experiments with many stateof-the-art underwater image enhancement algorithms. Experimental results show that the proposed method provides superior results over them in terms of MSE,PSNR, SSIM, UIQM and UCIQE, and the enhanced images are more similar to their ground truth images. 展开更多
关键词 image enhancement multi-stream fusion underwater image
在线阅读 下载PDF
Finesse measurement for high-power optical enhancement cavity
9
作者 陆心怡 柳兴 +3 位作者 田其立 王焕 汪嘉俊 颜立新 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期414-421,共8页
Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a... Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications. 展开更多
关键词 optical enhancement cavity finesse measurement cavity ring-down ringing effect
在线阅读 下载PDF
A Modified CycleGAN for Multi-Organ Ultrasound Image Enhancement via Unpaired Pre-Training
10
作者 Haonan Han Bingyu Yang +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期194-203,共10页
Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image qual... Handheld ultrasound devices are known for their portability and affordability,making them widely utilized in underdeveloped areas and community healthcare for rapid diagnosis and early screening.However,the image quality of handheld ultrasound devices is not always satisfactory due to the limited equipment size,which hinders accurate diagnoses by doctors.At the same time,paired ultrasound images are difficult to obtain from the clinic because imaging process is complicated.Therefore,we propose a modified cycle generative adversarial network(cycleGAN) for ultrasound image enhancement from multiple organs via unpaired pre-training.We introduce an ultrasound image pre-training method that does not require paired images,alleviating the requirement for large-scale paired datasets.We also propose an enhanced block with different structures in the pre-training and fine-tuning phases,which can help achieve the goals of different training phases.To improve the robustness of the model,we add Gaussian noise to the training images as data augmentation.Our approach is effective in obtaining the best quantitative evaluation results using a small number of parameters and less training costs to improve the quality of handheld ultrasound devices. 展开更多
关键词 ultrasound image enhancement handheld devices unpaired images pre-train and finetune cycleGAN
在线阅读 下载PDF
SeisResoDiff: Seismic resolution enhancement based on a diffusion model
11
作者 Hao-Ran Zhang Yang Liu +1 位作者 Yu-Hang Sun Gui Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3166-3188,共23页
High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher reso... High resolution of post-stack seismic data assists in better interpretation of subsurface structures as well as high accuracy of impedance inversion. Therefore, geophysicists consistently strive to acquire higher resolution seismic images in petroleum exploration. Although there have been successful applications of conventional signal processing and machine learning for post-stack seismic resolution enhancement,there is limited reference to the seismic applications of the recent emergence and rapid development of generative artificial intelligence. Hence, we propose to apply diffusion models, among the most popular generative models, to enhance seismic resolution. Specifically, we apply the classic diffusion model—denoising diffusion probabilistic model(DDPM), conditioned on the seismic data in low resolution, to reconstruct corresponding high-resolution images. Herein the entire scheme is referred to as SeisResoDiff. To provide a comprehensive and clear understanding of SeisResoDiff, we introduce the basic theories of diffusion models and detail the optimization objective's derivation with the aid of diagrams and algorithms. For implementation, we first propose a practical workflow to acquire abundant training data based on the generated pseudo-wells. Subsequently, we apply the trained model to both synthetic and field datasets, evaluating the results in three aspects: the appearance of seismic sections and slices in the time domain, frequency spectra, and comparisons with the synthetic data using real well-logging data at the well locations. The results demonstrate not only effective seismic resolution enhancement,but also additional denoising by the diffusion model. Experimental comparisons indicate that training the model on noisy data, which are more realistic, outperforms training on clean data. The proposed scheme demonstrates superiority over some conventional methods in high-resolution reconstruction and denoising ability, yielding more competitive results compared to our previous research. 展开更多
关键词 Seismic resolution enhancement Diffusion model High resolution Reservoir characterization Deep learning Seismic data processing
在线阅读 下载PDF
Plasma density enhancement in radio-frequency hollow electrode discharge
12
作者 贺柳良 何锋 欧阳吉庭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期44-51,共8页
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results s... The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF) discharges is investigated by a two-dimensional(2D) particle-in-cell/Monte-Carlo collision(PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes. 展开更多
关键词 RF capacitively coupled plasma sources plasma density enhancement hollow cathodeeffect hollow electrode
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
13
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
在线阅读 下载PDF
A theoretical study of the signal enhancement mechanism of coaxial DP-LIBS
14
作者 宋震 王俊霄 +11 位作者 王钢 张雷 王树青 张婉飞 马晓飞 刘珍荣 罗学彬 马维光 叶泽甫 朱竹君 尹王保 贾锁堂 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期156-164,共9页
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra... In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS. 展开更多
关键词 laser-induced plasma radiation fluid dynamics model double pulse laser-induced breakdown spectroscopy(DP-LIBS) laser ablation signal enhancement mechanism
在线阅读 下载PDF
Temperature-and alkali-resistant induced domestication of Bacillus pasteurii in drilling fluid and its borehole wall enhancement properties
15
作者 Ze-Hua Du Zhi-Jun Li +4 位作者 Jun-Xiu Chen Zi-Yi Ma Guang-Ding Guo Hao Zhang Sheng Wang 《Petroleum Science》 CSCD 2024年第6期4358-4375,共18页
The microbial induced calcium carbonate precipitation(MICP)technology provides a new approach to solve borehole destabilization in broken formations;however,the high-temperature and alkaline environments inhibit the g... The microbial induced calcium carbonate precipitation(MICP)technology provides a new approach to solve borehole destabilization in broken formations;however,the high-temperature and alkaline environments inhibit the growth of microorganisms,which in turn affects the performance of their wall enhancement performance.In this study,a pH and temperature-coupled induced domestication method was applied to Bacillus pasteurii,and its wall enhancement performance was evaluated.Post domestication,Bacillus pasteurii exhibited high growth activity at pH 10.3 and temperature 45℃.In a sodium carboxymethyl cellulose(CMC)drilling fluid environment,bacterial concentration reached 1.373 with urease activity at 1.98 after 24 h,and in a xanthan gum(XG)environment,the figures were 0.931 and 1.76,respectively—significantly higher than those before domestication.The Bacillus pasteurii-CMC system exhibited enhanced performance with the unconfined compressive strength of the specimen up to 1.232 MPa,permeability coefficient as low as 0.024,and calcium carbonate production up to 24.685 g.The crushed specimen portions remained lumpy with even calcium carbonate distribution.In contrast,the Bacillus pasteurii-XG system exhibited the highest unconfined compressive strength of 0.561 MPa,lowest permeability coefficient of 0.081,and the greatest calcium carbonate production of 16.03 g,with an externally cemented shell but internally loose structure and uneven calcium carbonate distribution,resulting in weaker mechanical properties.The Bacillus pasteurii induced predominantly vaterite calcium carbonate crystals in the CMC drilling fluid.In the XG drilling fluid,the crystals were mainly calcite.Both types effectively cemented the broken particles,improving formation strength and reducing permeability.However,under the same conditions,the Bacillus pasteurii-CMC system demonstrated a more pronounced enhancement effect. 展开更多
关键词 Broken formation Instability of borehole wall Bacillus pasteuri Drilling fluid Induced domestication Wall enhancement properties
在线阅读 下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
16
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
在线阅读 下载PDF
Video Enhancement Network Based on CNN and Transformer
17
作者 YUAN Lang HUI Chen +3 位作者 WU Yanfeng LIAO Ronghua JIANG Feng GAO Ying 《ZTE Communications》 2024年第4期78-88,共11页
To enhance the video quality after encoding and decoding in video compression,a video quality enhancement framework is pro-posed based on local and non-local priors in this paper.Low-level features are first extracted... To enhance the video quality after encoding and decoding in video compression,a video quality enhancement framework is pro-posed based on local and non-local priors in this paper.Low-level features are first extracted through a single convolution layer and then pro-cessed by several conv-tran blocks(CTB)to extract high-level features,which are ultimately transformed into a residual image.The final re-constructed video frame is obtained by performing an element-wise addition of the residual image and the original lossy video frame.Experi-ments show that the proposed Conv-Tran Network(CTN)model effectively recovers the quality loss caused by Versatile Video Coding(VVC)and further improves VVC's performance. 展开更多
关键词 attention fusion mechanism H.266/VVC transformer video coding video quality enhancement
在线阅读 下载PDF
High-frequency enhanced ultrafast compressed active photography
18
作者 Yizhao Meng Yu Lu +5 位作者 Pengfei Zhang Yi Liu Fei Yin Lin Kai Qing Yang Feng Chen 《Opto-Electronic Advances》 2025年第1期32-43,共12页
Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the ra... Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames. 展开更多
关键词 ultrafast compressed imaging high-frequency enhanced sampling spectral-temporal transform transient processes high-fidelity reconstruction
在线阅读 下载PDF
Paradox of Happiness Gene——An Analysis of Power’s Ethical Thoughts in Generosity: An Enhancement
19
作者 梁渊 罗翔 陈益 《海外英语》 2019年第10期230-232,共3页
Generosity:An Enhancement revolving around Thassadit Amzwar and the happiness gene in her body, concentrates on its appearance,research, publicity and exploiting of her happiness gene. It proposes the ethical conundru... Generosity:An Enhancement revolving around Thassadit Amzwar and the happiness gene in her body, concentrates on its appearance,research, publicity and exploiting of her happiness gene. It proposes the ethical conundrums: Are negative emotions like depression and anxiety no longer needed? Can a genetic marker dispose us toward happiness? Happiness should not be left to contingency and genes.Once materialized into a physical object which can be bought and sold like a commodity,the fundamental laws of ethics will collapse. 展开更多
关键词 RICHARD POWERS GENEROSITY AN enhancement Happiness Gene PARADOX
在线阅读 下载PDF
Small Cell Enhancement物理层关键技术研究 被引量:3
20
作者 周代卫 周宇 孙向前 《移动通信》 2015年第3期36-41,共6页
作为移动网络解决热点覆盖和数据分流的有效途径,Small Cell在实际部署时仍面临着小区间干扰、移动性管理、回程承载、负荷均衡、维护和优化等难题。为有效克服和优化这些问题,在其演进技术Small Cell Enhancement中,分别从提高频谱效... 作为移动网络解决热点覆盖和数据分流的有效途径,Small Cell在实际部署时仍面临着小区间干扰、移动性管理、回程承载、负荷均衡、维护和优化等难题。为有效克服和优化这些问题,在其演进技术Small Cell Enhancement中,分别从提高频谱效率和协作能力2个方向在关键的物理层提出了一系列潜在技术方案,从而进一步提高系统容量、均衡系统负载,同时更好地兼容现有LTE/LTE-A网络体系。 展开更多
关键词 SMALL CELL enhancement物理层 频谱效率 高效协作
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部