Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur...Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
Cooperative path dynamic planning of a UCAV (unmanned combat air vehicle) team not only considers the capability of task requirement of single UCAV, but also considers the cooperative dynamic connection among member...Cooperative path dynamic planning of a UCAV (unmanned combat air vehicle) team not only considers the capability of task requirement of single UCAV, but also considers the cooperative dynamic connection among members of the UCAV team. A cooperative path dynamic planning model of the UCAV team by applying a global optimization method is discussed in this paper and the corresponding model is built and analyzed. By the example simulation, the reasonable result acquired indicates that the model could meet dynamic planning demand under the circumstance of membership functions. The model is easy to be realized and has good practicability.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
为更加高效帮助航母编队指挥所和指挥员精准判断战场态势,进而作出最佳决策,从战术运用角度分析未来舰载电子战飞机与无人机协同实施电子进攻行动的优势,通过借鉴美军DoDAF(department of defense architecture framework)体系结构框架...为更加高效帮助航母编队指挥所和指挥员精准判断战场态势,进而作出最佳决策,从战术运用角度分析未来舰载电子战飞机与无人机协同实施电子进攻行动的优势,通过借鉴美军DoDAF(department of defense architecture framework)体系结构框架设计思路,启发构建“五视图体系”,用以清晰呈现各参战平台在重要时间节点的具体行动及内在联系。该研究对于未来进一步优化我航母编队遂行作战任务流程具有较强的现实意义和理论价值。展开更多
基金supported by the National Natural Science Foundation of China(No.61573286)the Aeronautical Science Foundation of China(No.20180753006)+2 种基金the Fundamental Research Funds for the Central Universities(3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province(2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金supported by the National Social Science Foundation of China in 2012 under Grant No. 11GJ003-074the Science Foundation of Aeronautics of China under Grant No. 20085584010
文摘Cooperative path dynamic planning of a UCAV (unmanned combat air vehicle) team not only considers the capability of task requirement of single UCAV, but also considers the cooperative dynamic connection among members of the UCAV team. A cooperative path dynamic planning model of the UCAV team by applying a global optimization method is discussed in this paper and the corresponding model is built and analyzed. By the example simulation, the reasonable result acquired indicates that the model could meet dynamic planning demand under the circumstance of membership functions. The model is easy to be realized and has good practicability.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘为更加高效帮助航母编队指挥所和指挥员精准判断战场态势,进而作出最佳决策,从战术运用角度分析未来舰载电子战飞机与无人机协同实施电子进攻行动的优势,通过借鉴美军DoDAF(department of defense architecture framework)体系结构框架设计思路,启发构建“五视图体系”,用以清晰呈现各参战平台在重要时间节点的具体行动及内在联系。该研究对于未来进一步优化我航母编队遂行作战任务流程具有较强的现实意义和理论价值。