Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure...Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.展开更多
The lifetime of a wireless sensor network(WSN)is crucial for determining the maximum duration for data collection in Internet of Things applications.To extend the WSN's lifetime,we propose deploying an unmanned gr...The lifetime of a wireless sensor network(WSN)is crucial for determining the maximum duration for data collection in Internet of Things applications.To extend the WSN's lifetime,we propose deploying an unmanned ground vehicle(UGV)within the energy-hungry WSN.This allows nodes,including sensors and the UGV,to share their energy using wireless power transfer techniques.To optimize the UGV's trajectory,we have developed a tabu searchbased method for global optimality,followed by a clustering-based method suitable for real-world applications.When the UGV reaches a stopping point,it functions as a regular sensor with ample battery.Accordingly,we have designed optimal data and energy allocation algorithms for both centralized and distributed deployment.Simulation results demonstrate that the UGV and energy-sharing significantly extend the WSN's lifetime.This effect is especially prominent in sparsely connected WSNs compared to highly connected ones,and energy-sharing has a more pronounced impact on network lifetime extension than UGV mobility.展开更多
基金Supported by the National Natural Science Foundation of China(61273346)the National Defense Key Fundamental Research Program of China(A20130010)the Program for the Fundamental Research of Beijing Institute of Technology(2016CX02010)
文摘Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.
基金supported by the National Natural Science Foundation of China(No.62171486 and No.U2001213)the Guangdong Basic and Applied Basic Research Project(2022A1515140166)。
文摘The lifetime of a wireless sensor network(WSN)is crucial for determining the maximum duration for data collection in Internet of Things applications.To extend the WSN's lifetime,we propose deploying an unmanned ground vehicle(UGV)within the energy-hungry WSN.This allows nodes,including sensors and the UGV,to share their energy using wireless power transfer techniques.To optimize the UGV's trajectory,we have developed a tabu searchbased method for global optimality,followed by a clustering-based method suitable for real-world applications.When the UGV reaches a stopping point,it functions as a regular sensor with ample battery.Accordingly,we have designed optimal data and energy allocation algorithms for both centralized and distributed deployment.Simulation results demonstrate that the UGV and energy-sharing significantly extend the WSN's lifetime.This effect is especially prominent in sparsely connected WSNs compared to highly connected ones,and energy-sharing has a more pronounced impact on network lifetime extension than UGV mobility.