为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结...为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结合的齿轮箱状态监测方法。首先,利用极致梯度提升(extreme gradient boosting,XGBoost)算法筛选输入参数组成原始序列,对其进行分解得到季节与趋势序列。其次,提出季节、趋势序列特征提取模块获取季节及趋势特征的序列,将其与经过Informer模型处理后的特征序列进行融合后输入进多层感知机映射成最终的预测值,以构建提出的多分支时间序列预测网络(multi-branch time series prediction network,MBFN)。最后,利用迁移学习并结合一分类向量支持机(one-class support vector machine,OCSVM)模型及滑动窗口构建齿轮箱的健康指数,完成齿轮箱状态监测。实验结果表明,所提出模型的MBFN显著提高了油温预测精度,优于常规时间序列预测模型,所使用的迁移策略能以较少数据适应不同数据的分布,进而实现对齿轮箱的状态监测,并且所提出的模型可以提前18.9 d发出齿轮箱故障预警。展开更多
为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能...为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。展开更多
文摘为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结合的齿轮箱状态监测方法。首先,利用极致梯度提升(extreme gradient boosting,XGBoost)算法筛选输入参数组成原始序列,对其进行分解得到季节与趋势序列。其次,提出季节、趋势序列特征提取模块获取季节及趋势特征的序列,将其与经过Informer模型处理后的特征序列进行融合后输入进多层感知机映射成最终的预测值,以构建提出的多分支时间序列预测网络(multi-branch time series prediction network,MBFN)。最后,利用迁移学习并结合一分类向量支持机(one-class support vector machine,OCSVM)模型及滑动窗口构建齿轮箱的健康指数,完成齿轮箱状态监测。实验结果表明,所提出模型的MBFN显著提高了油温预测精度,优于常规时间序列预测模型,所使用的迁移策略能以较少数据适应不同数据的分布,进而实现对齿轮箱的状态监测,并且所提出的模型可以提前18.9 d发出齿轮箱故障预警。
文摘为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。