For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
In order to reduce the switching frequency harmonics caused by the grid-connected converter,the LCL filter is adopted.However the third-order LCL filter,as an undamped system,is not stable.In order to overcome this pr...In order to reduce the switching frequency harmonics caused by the grid-connected converter,the LCL filter is adopted.However the third-order LCL filter,as an undamped system,is not stable.In order to overcome this problem,a damping resistor and the active damping method are often used;but the damping resistor will result in the power consumption,and the method of active damping needs more sensors compared to the standard control.展开更多
Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Th...Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Then,parameters of PI controller were calculated on the basis of an equivalent controlled object.Finally,Norton equivalent circuit for the current control loop of grid-connected system was derived by integrating one control equation,which connected the PWM inverter output voltage and the LCL inverter-side current,with two circuit equations,separately using the LCL inverter-side current and the injected current as loop currents.With the induced Norton equivalent circuit,system-level resonant and unstable issues on real grid-connected system applied in weak distributed power systems can be easily analyzed.The validity of substituting Norton equivalent circuit for grid-connected system is verified by simulation and experiment.展开更多
Grid-connected current control is one.of the important control schemes in distributed generation systems.A lot of control methods have been developed,such as hysteresis control,dead-beat control,one-cycle control,etc....Grid-connected current control is one.of the important control schemes in distributed generation systems.A lot of control methods have been developed,such as hysteresis control,dead-beat control,one-cycle control,etc.Hysteresis current control has the advantages of simplicity,robustness and good large-signal response.Unfortunately,the switching frequency of the converter using hysteresis current control varies according to the parameters of the bus voltage,the filter inductor and the bandwidth.Increasing the hysteresis bandwidth and the filter inductance can reduce the switching frequency.展开更多
Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. ...Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.展开更多
Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected...Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected PV power systems was provided. Various islanding detection methods were introduced and their strength and weakness were dicussed. An improved islanding detection method was proposed based on active frequency drift (AFD). The new method tolerated capacitive and inductive loads, because its perturbation signal was not offset by the non-resistive load. The new method through simulation in MATLAB/Simulink was evaluated and the advantages of the new method were demonstrated.展开更多
智能电网的发展需要与之相适应的测试能力,测试环境将成为智能电网突破性发展的核心推动力。通过梳理美国智能电网测试环境的案例,分析了美国智能电网测试环境发展的特点,研究了美国国家标准技术研究院(National Institute of Standards...智能电网的发展需要与之相适应的测试能力,测试环境将成为智能电网突破性发展的核心推动力。通过梳理美国智能电网测试环境的案例,分析了美国智能电网测试环境发展的特点,研究了美国国家标准技术研究院(National Institute of Standards and Technology,NIST)提出的发展机遇和发展思路,总结分析了美国智能电网测试环境提升发展的行动策略以及给我们的启示。NIST和能源部(Department of Energy,DOE)的协调和引领、研究机构资源和能力的协同、公共基础资源的共享和远程访问,形成了美国智能电网测试环境发展的合力。智能电网测试环境的发展,应以满足智能电网发展需要为出发点,以模块化、互联互通为发展方向。共享和远程开放需作为信息物理融合系统(cyber physic system,CPS)基础性和独特性测试资源建设的重要原则。系统模型、仿真工具和测试数据的积累和使用也需要整体协调、有序推进和充分共享。展开更多
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
文摘In order to reduce the switching frequency harmonics caused by the grid-connected converter,the LCL filter is adopted.However the third-order LCL filter,as an undamped system,is not stable.In order to overcome this problem,a damping resistor and the active damping method are often used;but the damping resistor will result in the power consumption,and the method of active damping needs more sensors compared to the standard control.
基金Project(51307009)supported by the National Natural Science Foundation of ChinaProject(12JJ4045)supported by Hunan Provincial Natural Science Foundation,China+2 种基金Project(2011KFJJ003)supported by the Key Laboratory for Power Technology of Renewable Energy Sources of Hunan Province,ChinaProject(2011kfj14)supported by the Fund of Key Laboratory of Hunan Province about Power System Operation and Control,ChinaProject(454.13S-20)supported by the Enterprises’Postdoctoral Funds of Pudong Area of Shanghai,China
文摘Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Then,parameters of PI controller were calculated on the basis of an equivalent controlled object.Finally,Norton equivalent circuit for the current control loop of grid-connected system was derived by integrating one control equation,which connected the PWM inverter output voltage and the LCL inverter-side current,with two circuit equations,separately using the LCL inverter-side current and the injected current as loop currents.With the induced Norton equivalent circuit,system-level resonant and unstable issues on real grid-connected system applied in weak distributed power systems can be easily analyzed.The validity of substituting Norton equivalent circuit for grid-connected system is verified by simulation and experiment.
文摘Grid-connected current control is one.of the important control schemes in distributed generation systems.A lot of control methods have been developed,such as hysteresis control,dead-beat control,one-cycle control,etc.Hysteresis current control has the advantages of simplicity,robustness and good large-signal response.Unfortunately,the switching frequency of the converter using hysteresis current control varies according to the parameters of the bus voltage,the filter inductor and the bandwidth.Increasing the hysteresis bandwidth and the filter inductance can reduce the switching frequency.
文摘Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.
基金Supported by the National Science and Technology Support Program(2014BAD06B04-1-09)China Postdoctoral Fund(2016M601406)Heilongjiang Postdoctoral Fund(LBHZ15024)
文摘Islanding detection is a mandatory component in grid-connected photovoltaic (PV) inverters. It is also a key issue in the photovoltaic agriculture. In this work, an overview on the islanding effect in grid-connected PV power systems was provided. Various islanding detection methods were introduced and their strength and weakness were dicussed. An improved islanding detection method was proposed based on active frequency drift (AFD). The new method tolerated capacitive and inductive loads, because its perturbation signal was not offset by the non-resistive load. The new method through simulation in MATLAB/Simulink was evaluated and the advantages of the new method were demonstrated.
文摘智能电网的发展需要与之相适应的测试能力,测试环境将成为智能电网突破性发展的核心推动力。通过梳理美国智能电网测试环境的案例,分析了美国智能电网测试环境发展的特点,研究了美国国家标准技术研究院(National Institute of Standards and Technology,NIST)提出的发展机遇和发展思路,总结分析了美国智能电网测试环境提升发展的行动策略以及给我们的启示。NIST和能源部(Department of Energy,DOE)的协调和引领、研究机构资源和能力的协同、公共基础资源的共享和远程访问,形成了美国智能电网测试环境发展的合力。智能电网测试环境的发展,应以满足智能电网发展需要为出发点,以模块化、互联互通为发展方向。共享和远程开放需作为信息物理融合系统(cyber physic system,CPS)基础性和独特性测试资源建设的重要原则。系统模型、仿真工具和测试数据的积累和使用也需要整体协调、有序推进和充分共享。