期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:3
1
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
在线阅读 下载PDF
改进多准则决策和人工神经网络的风浪联合开发区划智能模型研究
2
作者 邵萌 管笑 +4 位作者 孙金伟 毛智谋 邵珠晓 伊传秀 李祥东 《中国海洋大学学报(自然科学版)》 北大核心 2025年第7期117-128,共12页
针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为... 针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为降低专家的主观偏差,应用基于层级的模糊权重评估(Fuzzy level based weight assessment,FLBWA)法来计算各评价指标权重;继而结合改进的Borda-全乘比例多目标优化(Borda-multi-objective optimization on the basis of ratio analysis plus full multiplicative form,Borda-MULTIMOORA)法计算开发适宜性指数,从而能够更加准确、高效地得到评价结果;之后,基于灰狼优化算法的反向传播(Grey wolf optimizer with back propagation,GWO-BP)神经网络构建并训练智能模型,将适宜性分析转化为自动化、高效化和智能化的过程;最后,以山东省风浪联合开发区划为例验证该模型的可行性和合理性。根据实例验证,该模型可以实现风浪联合开发区划的智能化,为相关领域的研究和政府规划提供参考。 展开更多
关键词 风浪联合开发 区划 基于层级的模糊权重评估法 改进的Borda-全乘比例多目标优化法 灰狼优化算法的反向传播
在线阅读 下载PDF
基于改进灰狼优化BP网络的城中村火灾预测
3
作者 吕淑然 田江雪 党鑫宇 《中国安全科学学报》 北大核心 2025年第8期196-204,共9页
为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经... 为了预防城中村火灾,利用改进灰狼优化算法(IGWO)和反向传播(BP)神经网络,对城中村火灾风险进行预测。引入非线性收敛因子和变异算子,改进传统灰狼优化算法(GWO),提高算法的全局搜索能力、收敛速度和稳定性,进而构建基于IGWO优化BP神经网络的城中村火灾风险预测模型(IGWO-BP),结合城中村火灾风险因素的复杂性和特殊性制定指标体系,预测火灾风险,并进行实例验证。结果表明:相较于传统GWO、粒子群算法(PSO)、长城算法(GWCA),IGWO在全局搜索能力、收敛速度和稳定性等方面均有显著提升,IGWO-BP模型可通过处理城中村火灾风险指标,实现对火灾风险的预测。 展开更多
关键词 改进灰狼优化算法(IGWO) 反向传播(BP)神经网络 城中村火灾 风险预测 变异算子 高维函数
在线阅读 下载PDF
基于BP-IGWO和分布式传感器的智能蒙皮物理场反演方法
4
作者 龙彦志 郑博宇 +2 位作者 赵鑫 郑禄军 陈仁文 《科学技术与工程》 北大核心 2025年第16期6961-6969,共9页
飞行器智能蒙皮通过在飞行器复合材料蒙皮上集成分布式传感器、驱动器和控制器,使其具有监测其本身状态和损伤的能力,其中物理场反演算法是智能蒙皮信号处理中的重要一环。但是由于传感器布置密度小等原因,传统的反演算法精度不高。为... 飞行器智能蒙皮通过在飞行器复合材料蒙皮上集成分布式传感器、驱动器和控制器,使其具有监测其本身状态和损伤的能力,其中物理场反演算法是智能蒙皮信号处理中的重要一环。但是由于传感器布置密度小等原因,传统的反演算法精度不高。为了提高智能蒙皮的监测精度,提出一种将反向传播(back propagation,BP)神经网络与改进的灰狼优化算法(improved grey wolf optimizer,IGWO)优化克里金模型融合的BP-IGWO反演算法。制作智能蒙皮原理样件,通过风洞试验对该算法进行验证。结果表明:BP-IGWO反演算法较之传统反演算法具有更高的精度和细节呈现能力,能更好地监测智能蒙皮的状态。 展开更多
关键词 智能蒙皮 物理场反演 人工神经网络 反向传播神经网络-改进的灰狼优化器(BP-IGWO) 克里金法
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
5
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
6
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
基于GWO-BP的震后过渡安置阶段应急物资需求预测 被引量:3
7
作者 詹伟 程春鑫 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期17-23,共7页
为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应... 为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应急物资间的数量关系,对震后过渡性安置阶段的物资需求量进行预测。结果表明:GWO-BP神经网络模型在预测转移安置人口方面,表现出较高的准确率和稳定性,能有效预测灾区安置人口数量,进而推算出相应的物资需求量。GWO-BP神经网络模型在震后过渡安置阶段的物资需求预测方面具有一定的有效性,能为震后应急物资的筹措决策提供参考。 展开更多
关键词 灰狼优化算法(GWO) 反向传播(BP)神经网络 地震 过渡安置阶段 应急物资 需求预测
在线阅读 下载PDF
基于改进灰狼算法的铁路隧道射线跟踪模型校正 被引量:3
8
作者 李翠然 张双勤 谢健骊 《电波科学学报》 EI CSCD 北大核心 2019年第2期165-171,共7页
针对灰狼优化(grey wolf optimization, GWO)算法易陷入局部最优和收敛精度差的问题,提出了一种基于对立搜索和Levy飞行策略的改进灰狼优化算法——OLGWO算法.在算法初始化阶段,采用对立搜索策略以缩小可行解范围;在灰狼位置更新过程中... 针对灰狼优化(grey wolf optimization, GWO)算法易陷入局部最优和收敛精度差的问题,提出了一种基于对立搜索和Levy飞行策略的改进灰狼优化算法——OLGWO算法.在算法初始化阶段,采用对立搜索策略以缩小可行解范围;在灰狼位置更新过程中,为避免算法陷入局部最优采用了Levy飞行策略. 4个标准测试函数的仿真实验表明,所提OLGWO算法在收敛速度及求解精度方面均优于GWO算法,可以较快且准确地搜索到目标函数的最优值.基于OLGWO算法对隧道射线跟踪传播模型进行校正的结果表明,校正后的模型在均方根误差和线性相关性方面具有较优的性能,能够实现铁路隧道环境中信号接收功率的精确预测. 展开更多
关键词 灰狼优化算法 射线跟踪 传播模型 校正 铁路通信
在线阅读 下载PDF
基于灰狼-鸟群算法的特征权重优化方法 被引量:1
9
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer GWO)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
在线阅读 下载PDF
高钢级管道焊缝材料应力应变本构关系确定方法 被引量:3
10
作者 张东 刘啸奔 +4 位作者 孔天威 杨悦 武学健 吴锴 张宏 《中国机械工程》 EI CAS CSCD 北大核心 2023年第17期2106-2114,共9页
高钢级管道环焊缝作为油气管道关键薄弱环节一直受到工程界与科研界的关注,它作为一种典型的焊接结构具有明显的非均质性,这会导致环焊缝材料轴向力学性能无法准确测试,严重影响管道环焊缝安全评价的准确性。基于MATLAB-PYTHON-ABAQUS... 高钢级管道环焊缝作为油气管道关键薄弱环节一直受到工程界与科研界的关注,它作为一种典型的焊接结构具有明显的非均质性,这会导致环焊缝材料轴向力学性能无法准确测试,严重影响管道环焊缝安全评价的准确性。基于MATLAB-PYTHON-ABAQUS联合仿真提出了一种高钢级管道焊缝区材料应力应变本构关系优化反演方法。开展了4组不同缺口尺寸的单轴拉伸试验,得到了各试样的载荷位移曲线;利用贝叶斯正则化反向传播(BRBP)神经网络与灰狼优化算法(GWO)得到了焊缝区材料真实应力应变本构关系,并通过试验数据充分验证了本构关系的准确性,结果表明相对误差小于1%。所提出的反演思路同样适用于均质金属材料大应变范围应力应变曲线的测定。该反演方法的提出可为高钢级管道环焊缝安全评价提供准确的应力应变本构关系及强度匹配关系,进一步保障了油气管道的安全运行。 展开更多
关键词 缺口圆棒拉伸试验 应力应变本构关系 贝叶斯正则化反向传播神经网络 灰狼优化算法 优化反演
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部