期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Designing of optimized microstrip fractal antenna using hybrid metaheuristic framework for IoT applications
1
作者 S KARUNAKAR Reddy ANITHA Guttavelli 《Journal of Systems Engineering and Electronics》 2025年第3期659-670,共12页
Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays... Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters. 展开更多
关键词 micro strip fractal antenna(MFA)model gain DIRECTIVITY support vector regressor(SVR)approach elephant clan updated grey wolf algorithm(ECU-gwa)
在线阅读 下载PDF
一种基于并行搜索策略的苍狼算法 被引量:3
2
作者 符强 汪鹏君 童楠 《计算机应用研究》 CSCD 北大核心 2016年第6期1662-1665,共4页
作为一种新型群体智能方法,苍狼算法模拟了苍狼在群体捕食过程中的搜索跟踪、包围、攻击等行为,具有结构简单、寻优能力强的特点。分析了该算法的优化机理,并对算法优化过程进行了数学定义及描述;提出了一种基于并行搜索策略的改进型苍... 作为一种新型群体智能方法,苍狼算法模拟了苍狼在群体捕食过程中的搜索跟踪、包围、攻击等行为,具有结构简单、寻优能力强的特点。分析了该算法的优化机理,并对算法优化过程进行了数学定义及描述;提出了一种基于并行搜索策略的改进型苍狼算法,将狼群分组,在整个搜索过程中同时进行局部开发和全局探索活动,以更好地满足目标搜寻的要求。通过典型的基准测试函数对算法进行了性能仿真测试,实验结果表明,与其他群体智能优化方法相比,改进型苍狼算法在收敛速度、收敛精度及鲁棒性等方面均具有一定优势。 展开更多
关键词 苍狼算法 群体智能 并行搜索策略 仿生机制 函数优化
在线阅读 下载PDF
基于灰狼-鸟群算法的特征权重优化方法 被引量:1
3
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer GWO)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
在线阅读 下载PDF
Research on improved active disturbance rejection control of continuous rotary motor electro-hydraulic servo system 被引量:7
4
作者 WANG Xiao-jing FENG Ya-ming SUN Yu-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3733-3743,共11页
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam... In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application. 展开更多
关键词 continuous rotary electro-hydraulic servo motor active disturbance rejection control(ADRC) fast tracking differentiator(TD) non-linear state error feedback(NLSEF) extended state observer(ESO) grey wolf algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部