Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays...Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.展开更多
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;...针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
文摘Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.
文摘针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.