Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller ...Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.展开更多
提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分...提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。展开更多
基金the Ministerial Level Advanced Research Foundation (061103)
文摘Grey modeling can be used to predict the behavioral development of a system and find out the lead control values of the system. By using fuzzy inference, PID parameters can be adjusted on line by the fuzzy controller with PID parameters self-tuning. According to the characteristics of target tracking system in a robot weapon, grey prediction theory and fuzzy PID control ideas are combined. A grey prediction mathematical model is constructed and a fuzzy PID controller with grey prediction was developed. Simulation result shows fuzzy PID control algorithm with grey prediction is an efficient method that can improve the control equality and robustness of traditional PID control and fuzzy PID control, and has much better performance for target tracking.
文摘提出了一种基于模糊推理与遗传算法的最优PID控制器的设计方法 .该控制器由离线和在线 2部分组成 .在离线部分 ,以系统响应的超调量、上升时间及调整时间为性能指标 ,利用遗传算法搜索出一组最优的PID参数K p ,T i 及T d ,作为在线部分调节的初始值 ;在在线部分 ,采用一个专用的PID参数优化程序 ,以离线部分获得的K p ,T i 及T d 为基础 ,根据系统当前的误差e和误差变化率 e ,通过模糊推理在线调整系统瞬态响应的PID参数 ,以确保系统的响应具有最优的动态和稳态性能 .计算机仿真结果表明 ,与传统的PID控制器相比 ,这种最优PID控制器具有良好的控制性能和鲁棒性能 。