Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例...文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。展开更多
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B...In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.展开更多
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th...Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.展开更多
For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the backgrou...For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the background value as a variable related to k.At the same time,the initial value is set as a variable,and the corresponding optimal parameter and the time response formula are determined according to the minimum value of mean relative error(MRE).Combined with the domestic natural gas annual consumption data,the classical model and the improved GM(1,1)model are applied to the calculation and error comparison respectively.It proves that the improved model is better than any other models.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately...A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately exponential function distribution.To simplify the process of parametric estimation,an approximate value is taken for the multiplied parameter.Then the estimators of coefficient of development and grey action quantity can be derived.At the same time,the principle of the new information priority is also considered.We take the last item of the first-order accumulated generation operator(1-AGO) on raw data sequence as the initial condition in the time response function.Then the new information can be taken full advantage of through the improved initial condition.Some properties of this new model are also discussed.The presented method is actually a combination of improvement of grey derivative and improvement of the initial condition.The results of an example indicate that the proposed method can improve prediction precision prominently.展开更多
With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as ...With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as a constant. Therefore, it cannot effectively fit the dynamic characteristics of the sequence, which results in the grey model having a low precision. The linear grey action quantity model cannot represent the index change law. This paper presents a grey action quantity model, the exponential optimization grey model(EOGM(1,1)), based on the exponential type of grey action quantity; it is constructed based on the exponential characteristics of the grey prediction model. The model can fully reflect the exponential characteristics of the simulation series with time. The exponential sequence has a higher fitting accuracy. The optimized result is verified using a numerical example for the fluctuating sequence and a case study for the index of the tertiary industry's GDP. The results show that the model improves the precision of the grey forecasting model and reduces the prediction error.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h ...This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.展开更多
A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag...A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.展开更多
As a kind of mathematical model, grey systems predi ct ion model has been widely applied to economy, management and engineering technol ogy. In 1982, Professor Deng Ju-long presented GM prediction model. Then some o t...As a kind of mathematical model, grey systems predi ct ion model has been widely applied to economy, management and engineering technol ogy. In 1982, Professor Deng Ju-long presented GM prediction model. Then some o ther scholars made improvements on GM model. Of course, much still should be don e to develop it. What the scholars have done is to take the first component of X (1) as the starting conditions of the grey differential model. It occ urs that the new information can not be used enough. This paper is addressed to choose the nth component of X (1) as the starting conditions to improv e the models. The main results of the paper is given in Theorem 2: The time response function of the grey differential equation x (0)(k)+az (1)(k)=b is given by x (1)(k)=x (1)(n)-ba e -a(k-n )+ba. and Theorem4: The time response of the grey Verhulst model is given by (1)(k) =ax (1)(n)bx (1)(n)+(a-bx (1)(n))ae a(k-n). As the new information is fully used, the accuracy of prediction is improved gre atly. Therefore, the new model with a certain theoretical and practical value.展开更多
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results sh...In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.展开更多
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
文摘文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。
基金supported by the National Natural Science Foundation of China(7084001290924022)the Ph.D.Thesis Innovation and Excellent Foundation of Nanjing University of Aeronautics and Astronautics(2010)
文摘In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
基金supported by the National Natural Science Foundation of China(70971103)the Specialized Research Fund for the Doctora Program of Higher Education(20120143110001)
文摘Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.
基金supported by the National Natural Science Foundation of China (71871106)the Blue and Green Project in Jiangsu Provincethe Six Talent Peaks Project in Jiangsu Province (2016-JY-011)
文摘For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the background value as a variable related to k.At the same time,the initial value is set as a variable,and the corresponding optimal parameter and the time response formula are determined according to the minimum value of mean relative error(MRE).Combined with the domestic natural gas annual consumption data,the classical model and the improved GM(1,1)model are applied to the calculation and error comparison respectively.It proves that the improved model is better than any other models.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
基金supported by the National Natural Science Foundation of China (7090103471071077)+2 种基金the National Educational Sciences Planning Key Project of Ministry of Education (DFA090215)the Fundamental Research Funds for the Central Universities (JUSRP21146JUSRP31107)
文摘A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately exponential function distribution.To simplify the process of parametric estimation,an approximate value is taken for the multiplied parameter.Then the estimators of coefficient of development and grey action quantity can be derived.At the same time,the principle of the new information priority is also considered.We take the last item of the first-order accumulated generation operator(1-AGO) on raw data sequence as the initial condition in the time response function.Then the new information can be taken full advantage of through the improved initial condition.Some properties of this new model are also discussed.The presented method is actually a combination of improvement of grey derivative and improvement of the initial condition.The results of an example indicate that the proposed method can improve prediction precision prominently.
基金supported by the National Key Research and Development Program of China(2016YFC1402000)the National Science Foundation of China(41701593+2 种基金7137109871571157)the National Social Science Fund Major Project(14ZDB151)
文摘With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as a constant. Therefore, it cannot effectively fit the dynamic characteristics of the sequence, which results in the grey model having a low precision. The linear grey action quantity model cannot represent the index change law. This paper presents a grey action quantity model, the exponential optimization grey model(EOGM(1,1)), based on the exponential type of grey action quantity; it is constructed based on the exponential characteristics of the grey prediction model. The model can fully reflect the exponential characteristics of the simulation series with time. The exponential sequence has a higher fitting accuracy. The optimized result is verified using a numerical example for the fluctuating sequence and a case study for the index of the tertiary industry's GDP. The results show that the model improves the precision of the grey forecasting model and reduces the prediction error.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金supported by the National Natural Science Foundation of China(7117111370901041)
文摘This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.
文摘A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.
文摘As a kind of mathematical model, grey systems predi ct ion model has been widely applied to economy, management and engineering technol ogy. In 1982, Professor Deng Ju-long presented GM prediction model. Then some o ther scholars made improvements on GM model. Of course, much still should be don e to develop it. What the scholars have done is to take the first component of X (1) as the starting conditions of the grey differential model. It occ urs that the new information can not be used enough. This paper is addressed to choose the nth component of X (1) as the starting conditions to improv e the models. The main results of the paper is given in Theorem 2: The time response function of the grey differential equation x (0)(k)+az (1)(k)=b is given by x (1)(k)=x (1)(n)-ba e -a(k-n )+ba. and Theorem4: The time response of the grey Verhulst model is given by (1)(k) =ax (1)(n)bx (1)(n)+(a-bx (1)(n))ae a(k-n). As the new information is fully used, the accuracy of prediction is improved gre atly. Therefore, the new model with a certain theoretical and practical value.
基金supported by the National Natural Science Foundation of China(1147105951375517+5 种基金71271226)the China Postdoctoral Science Foundation Funded Project(2014M560712)Chongqing Frontier and Applied Basic Research Project(cstc2014jcyj A00024)the Ministry of Education of Humanities and Social Sciences Youth Foundation(14YJAZH033)the Chongqing Municipal Education Scientific Planning Project(2012-GX-142)the Higher School Teaching Reform Research Project in Chongqing(1202010)
文摘In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.