期刊文献+
共找到1,529篇文章
< 1 2 77 >
每页显示 20 50 100
Link-16 anti-jamming performance evaluation based on grey relational analysis and cloud model
1
作者 NING Xiaoyan WANG Ying +1 位作者 WANG Zhenduo SUN Zhiguo 《Journal of Systems Engineering and Electronics》 2025年第1期62-72,共11页
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so... Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16. 展开更多
关键词 LINK-16 ANTI-JAMMING grey relational analysis(GRA) cloud model combination weights
在线阅读 下载PDF
幂函数变换GM(1,1)模型的逼近无偏性及拓展研究
2
作者 陈鹏宇 《统计与决策》 北大核心 2025年第14期53-58,共6页
文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例... 文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。 展开更多
关键词 gm(1 1)模型 幂函数变换 逼近无偏性 适宜建模序列
在线阅读 下载PDF
Prediction model of interval grey number based on DGM(1,1) 被引量:19
3
作者 Bo Zeng Sifeng Liu Naiming Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期598-603,共6页
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B... In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified. 展开更多
关键词 grey system theory prediction model interval grey number grey number band grey number layer Dgm(1 1) model.
在线阅读 下载PDF
A New Modified GM (1,1) Model: Grey Optimization Model 被引量:13
4
作者 Xiao Xinping College of Scienced, Wuhan University of Technologyl 430063, P R. China Deng Julong Dept. of Control, Huazhong University of Science and Technology, Wuhan 430074,P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期1-5,共5页
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
关键词 gm (1 1) grey optimization model Optimization method.
在线阅读 下载PDF
基于等维新息GM(2,1)的大气加权平均温度模型
5
作者 黄伟 高井祥 徐磊 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期220-226,259,共8页
大气加权平均温度是对流层的一个重要参数,对全球导航卫星系统(Global Navigation Satellite System,GNSS)水汽反演至关重要。文章采用GM(2,1)灰色模型结合一阶弱化算子对大气加权平均温度进行拟合和预测,基于2018年中国不同区域探空站... 大气加权平均温度是对流层的一个重要参数,对全球导航卫星系统(Global Navigation Satellite System,GNSS)水汽反演至关重要。文章采用GM(2,1)灰色模型结合一阶弱化算子对大气加权平均温度进行拟合和预测,基于2018年中国不同区域探空站日均大气加权平均温度进行建模分析。结果表明:在少量可用数据的情况下,GM(2,1)具有较好的建模预测能力,相对误差不超过5%,未来2 d的预测值相对误差均小于2%;与Bevis模型相比,GM(2,1)对大气加权平均温度建模也更具优势,且不需要实测的气象参数。该研究为GM(2,1)灰色模型应用于GNSS水汽反演、天气预报等提供借鉴。 展开更多
关键词 全球导航卫星系统(GNSS) 加权平均温度 Bevis模型 gm(2 1)灰色模型 探空站
在线阅读 下载PDF
基于GMS的平原区浅层地下水潜在硝酸盐点源污染预测研究——以秦皇岛为例
6
作者 胡博文 范琳琳 +4 位作者 王磊 李振雄 王振华 解志旺 李毅 《北京师范大学学报(自然科学版)》 北大核心 2025年第2期151-160,共10页
为研究秦皇岛平原区浅层地下水中硝酸盐污染潜在发展动态,本文利用GMS构建地下水水流与溶质迁移耦合模型,对地下水中硝酸盐潜在点源在未来20 a间的迁移和污染风险进行预测,探讨了切断污染源的不同时间情景对水源地的污染影响.结果表明:... 为研究秦皇岛平原区浅层地下水中硝酸盐污染潜在发展动态,本文利用GMS构建地下水水流与溶质迁移耦合模型,对地下水中硝酸盐潜在点源在未来20 a间的迁移和污染风险进行预测,探讨了切断污染源的不同时间情景对水源地的污染影响.结果表明:构建的地下水流动模型和36个野外统测数据拟合较好,能够反映区域地下水流动情况;浅层地下水中硝酸盐污染羽主延伸方向从西北向东南沿海扩散;水源地的地下水开采影响了局部地下水流动方向,昌黎县后孟营水源地存在较显著的污染风险.此外,研究发现切断污染源后,迁移和稀释的过程是缓解后孟营水源地硝酸盐污染风险的主要因素,及时切断污染源能够有效降低污染风险. 展开更多
关键词 浅层地下水 秦皇岛平原区 gmS数值模拟 硝酸盐 点源污染预测
在线阅读 下载PDF
结合ARIMA方法与GMS模拟洋河流域地下水水位
7
作者 孙福宝 童菊秀 +1 位作者 梁畅 仝锦威 《水资源与水工程学报》 北大核心 2025年第1期18-28,共11页
传统地下水数值模型在预测未来地下水水位时,常受限于难以获取的降水与蒸发数据。为解决这一问题,基于ARIMA模型预测降水与蒸发时间序列数据,并结合GMS地下水流模型,模拟洋河流域地下水水位变化过程,提出一种改进的地下水水位预测方法... 传统地下水数值模型在预测未来地下水水位时,常受限于难以获取的降水与蒸发数据。为解决这一问题,基于ARIMA模型预测降水与蒸发时间序列数据,并结合GMS地下水流模型,模拟洋河流域地下水水位变化过程,提出一种改进的地下水水位预测方法。通过分析洋河流域2000—2020年的历史气象数据,使用ARIMA模型预测2021年的降水与蒸发量,将预测结果输入GMS模型,开展地下水水位模拟实验。结果表明:GMS模型对洋河流域地下水水位的模拟效果较好,大多数NSE值分布在0.71~0.96之间,RMSE值均在0.05~0.45 m之间,整体精度较高;ARIMA模型对气象数据的预测精度较高,蒸发数据的预测效果优于降水;结合ARIMA模型与GMS模型的研究方法在精度和适用性上表现良好,为区域地下水资源管理提供了科学依据。研究提出的方法克服了传统模型对未来数据依赖性强的局限性,可为类似区域预测地下水水位提供参考。 展开更多
关键词 地下水水位 降水与蒸发数据 时间序列分析ARIMA方法 gmS 洋河流域
在线阅读 下载PDF
基于灰色GM(1,1)模型的2023—2027年闵行区脑卒中死亡趋势预测 被引量:1
8
作者 陈林利 轩水丽 +4 位作者 倪静宜 郭佳旗 刘薇 许慧琳 周毅彬 《复旦学报(医学版)》 CAS CSCD 北大核心 2024年第6期915-920,930,共7页
目的分析2012—2022年上海市闵行区脑卒中死亡变化趋势,预测2023—2027年脑卒中死亡情况。方法测算2012—2022年上海市闵行区脑卒中死亡的年度变化百分比(annual percentage change,APC),运用Joinpoint线性回归模型进行时间趋势分析。以... 目的分析2012—2022年上海市闵行区脑卒中死亡变化趋势,预测2023—2027年脑卒中死亡情况。方法测算2012—2022年上海市闵行区脑卒中死亡的年度变化百分比(annual percentage change,APC),运用Joinpoint线性回归模型进行时间趋势分析。以2012—2022年上海市闵行区脑卒中死亡率构建灰色GM(1,1)模型,运用相对误差和级比偏差评估模型拟合效果,对2023—2027年上海市闵行区脑卒中死亡率进行预测分析。结果2012—2022年上海市闵行区脑卒中全人群、男性和女性粗死亡率均呈上升趋势(全人群:APC=2.50%,P<0.001;男性:APC=3.41%,P<0.001;女性:APC=1.46%,P=0.008)。灰色GM(1,1)模型预测2023—2027年上海市闵行区脑卒中死亡率呈上升趋势,2027年全人群脑卒中粗死亡率为97.55/10万,男性为112.31/10万,女性为83.33/10万,检验评估模型拟合效果达到较高要求。结论近十年来上海市闵行区脑卒中死亡率呈明显上升趋势,5年预测结果显示死亡率呈逐年上升趋势。 展开更多
关键词 脑卒中 死亡趋势 预测 灰色gm(1 1)模型
在线阅读 下载PDF
基于GM(1,1)-IPSO-BP的重载铁路小半径曲线钢轨磨耗预测方法
9
作者 张斌 高玉祥 +2 位作者 陈再刚 王开云 时瑾 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第11期115-122,131,共9页
为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到... 为实现重载铁路小半径曲线段钢轨磨耗量的精准预测,提出一种非等间距灰色模型GM(1,1)与改进粒子群算法(IPSO)优化BP神经网络相结合的钢轨磨耗预测方法。首先,根据积分原理优化GM(1,1)非等间距模型的背景值计算方法,基于改进的模型得到实测磨耗序列的初步预测结果;然后,利用IPSO算法对BP神经网络的权值和阈值进行自动寻优,对GM(1,1)模型初步预测序列的残差进行校正;最后,将优化后的两种模型组合构建基于GM(1,1)-IPSO-BP的重载铁路小半径曲线地段钢轨磨耗量预测模型。以某重载铁路桥上半径400 m曲线为例,利用长期的磨耗监测数据进行方法的适用性分析,研究结果表明:GM(1,1)-IPSO-BP模型克服了磨耗数据的非线性、随机性特征对计算结果的影响,预测精度优于单独使用GM(1,1)、IPSO-BP模型;背景值优化后的GM(1,1)模型预测准确性更可靠;IPSO优化算法提高了BP神经网络计算的精度和速度;预测结果和实测数据之间的相对误差不大于4%;在预测区间上的绝对误差小于0.4 mm,运用该方法能够较准确地得到钢轨磨耗的发展规律。研究结果可为重载铁路小半径曲线钢轨的精准维修和科学使用提供参考。 展开更多
关键词 钢轨磨耗 gm(1 1)模型 小半径曲线 BP神经网络 重载铁路 粒子群算法
在线阅读 下载PDF
Modeling mechanism and extension of GM (1,1) 被引量:17
10
作者 Xinping Xiao Yichen Hu Huan Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期445-453,共9页
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th... Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed. 展开更多
关键词 gm (1 1) matrix analysis Ggm (1 1) model parameter modeling mechanism.
在线阅读 下载PDF
Improvement and application of GM(1,1) model based on multivariable dynamic optimization 被引量:18
11
作者 WANG Yuhong LU Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期593-601,共9页
For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the backgrou... For the classical GM(1,1)model,the prediction accuracy is not high,and the optimization of the initial and background values is one-sided.In this paper,the Lagrange mean value theorem is used to construct the background value as a variable related to k.At the same time,the initial value is set as a variable,and the corresponding optimal parameter and the time response formula are determined according to the minimum value of mean relative error(MRE).Combined with the domestic natural gas annual consumption data,the classical model and the improved GM(1,1)model are applied to the calculation and error comparison respectively.It proves that the improved model is better than any other models. 展开更多
关键词 grey prediction gm(1 1)model background value grey system theory
在线阅读 下载PDF
硫酸盐冻融下沙漠砂混凝土抗冻性能及基于GM(1,1)模型强度预测
12
作者 刘海峰 姜彦杰 +3 位作者 孙竟鹏 车佳玲 杨维武 朱立晨 《功能材料》 CAS CSCD 北大核心 2024年第12期12151-12161,共11页
为了研究硫酸盐冻融循环作用下沙漠砂混凝土(DSC)抗冻性能及强度规律,以不同质量分数硫酸盐溶液(3%、5%、7%Na_(2)SO_(4))为冻融介质进行冻融循环试验,分析硫酸盐冻融下DSC表观特征、质量损失率、相对动弹性模量、抗蚀系数、超声波速损... 为了研究硫酸盐冻融循环作用下沙漠砂混凝土(DSC)抗冻性能及强度规律,以不同质量分数硫酸盐溶液(3%、5%、7%Na_(2)SO_(4))为冻融介质进行冻融循环试验,分析硫酸盐冻融下DSC表观特征、质量损失率、相对动弹性模量、抗蚀系数、超声波速损失率变化规律;建立硫酸盐冻融下沙漠砂混凝土GM(1,1)强度预测模型。研究结果表明,随着冻融循环次数增加,混凝土质量损失率、超声波速损失率增大,抗蚀系数与相对动弹性模量降低。沙漠砂替代率(DSRR)从0增至40%时混凝土表现出较好抗冻性能;当DSRR为60%时,过量沙漠砂的掺入对混凝土抗冻性能产生不利影响。较大质量分数硫酸盐溶液加剧混凝土破坏,降低了预测寿命。GM(1,1)模型预测结果平均相对误差小于2%,具有较好预测精度,可为西北地区硫酸盐冻融环境下混凝土结构服役评估提供参考。 展开更多
关键词 硫酸盐冻融 沙漠砂混凝土(DSC) 沙漠砂替代率(DSRR) gm(1 1)模型 寿命预测
在线阅读 下载PDF
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model 被引量:20
13
作者 Naiming Xie Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期96-102,共7页
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th... This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model. 展开更多
关键词 grey number grey system theory INTERVAL discrete grey forecasting model non-homogeneous exponential sequence
在线阅读 下载PDF
Improved unequal interval grey model and its applications 被引量:5
14
作者 Yuhong Wang Yaoguo Dang Xujin Pu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期445-451,共7页
A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately... A new method to improve prediction precision of GM(1,1) model with unequal time interval is presented.The grey derivative is multiplied by a parameter to guarantee the time response function satisfying approximately exponential function distribution.To simplify the process of parametric estimation,an approximate value is taken for the multiplied parameter.Then the estimators of coefficient of development and grey action quantity can be derived.At the same time,the principle of the new information priority is also considered.We take the last item of the first-order accumulated generation operator(1-AGO) on raw data sequence as the initial condition in the time response function.Then the new information can be taken full advantage of through the improved initial condition.Some properties of this new model are also discussed.The presented method is actually a combination of improvement of grey derivative and improvement of the initial condition.The results of an example indicate that the proposed method can improve prediction precision prominently. 展开更多
关键词 grey derivative initial condition gm(1 1) model unequal interval.
在线阅读 下载PDF
Improved grey prediction model based on exponential grey action quantity 被引量:17
15
作者 YIN Kedong GENG Yan LI Xuemei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期560-570,共11页
With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as ... With the passage of time, it has become important to investigate new methods for updating data to better fit the trends of the grey prediction model. The traditional GM(1,1) usually sets the grey action quantity as a constant. Therefore, it cannot effectively fit the dynamic characteristics of the sequence, which results in the grey model having a low precision. The linear grey action quantity model cannot represent the index change law. This paper presents a grey action quantity model, the exponential optimization grey model(EOGM(1,1)), based on the exponential type of grey action quantity; it is constructed based on the exponential characteristics of the grey prediction model. The model can fully reflect the exponential characteristics of the simulation series with time. The exponential sequence has a higher fitting accuracy. The optimized result is verified using a numerical example for the fluctuating sequence and a case study for the index of the tertiary industry's GDP. The results show that the model improves the precision of the grey forecasting model and reduces the prediction error. 展开更多
关键词 exponential of grey action quantity optimal algorithm grey forecasting mathematical modeling
在线阅读 下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:12
16
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (Mgm(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
在线阅读 下载PDF
Expansion modelling of discrete grey model based on multi-factor information aggregation 被引量:7
17
作者 Naiming Xie Chaoyu Zhu Jing Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期833-839,共7页
This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h ... This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model. 展开更多
关键词 multi-variable system Solow residual method dis crete grey forecasting model grey system theory (GST).
在线阅读 下载PDF
Grey Markov chain and its application in drift prediction model of FOGs 被引量:5
18
作者 Fan Chunling 1,2 , Jin Zhihua1, Tian Weifeng1 & Qian Feng11. Department of Information Measurement Technology and Instrument, Shanghai Jiaotong University,Shanghai 200030, P. R. China 2. College of Automation and Electric Engineering, Qingdao University of Science and Technology,Qingdao 266042, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期388-393,共6页
A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag... A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective. 展开更多
关键词 grey model Markov chain FOG drift.
在线阅读 下载PDF
The GM Models That x(n) Be Taken as Initial Value 被引量:2
19
作者 DANG Yao-guo, LIU Si-feng, CHEN Ke-jia (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期276-277,共2页
As a kind of mathematical model, grey systems predi ct ion model has been widely applied to economy, management and engineering technol ogy. In 1982, Professor Deng Ju-long presented GM prediction model. Then some o t... As a kind of mathematical model, grey systems predi ct ion model has been widely applied to economy, management and engineering technol ogy. In 1982, Professor Deng Ju-long presented GM prediction model. Then some o ther scholars made improvements on GM model. Of course, much still should be don e to develop it. What the scholars have done is to take the first component of X (1) as the starting conditions of the grey differential model. It occ urs that the new information can not be used enough. This paper is addressed to choose the nth component of X (1) as the starting conditions to improv e the models. The main results of the paper is given in Theorem 2: The time response function of the grey differential equation x (0)(k)+az (1)(k)=b is given by x (1)(k)=x (1)(n)-ba e -a(k-n )+ba. and Theorem4: The time response of the grey Verhulst model is given by (1)(k) =ax (1)(n)bx (1)(n)+(a-bx (1)(n))ae a(k-n). As the new information is fully used, the accuracy of prediction is improved gre atly. Therefore, the new model with a certain theoretical and practical value. 展开更多
关键词 gm models starting conditions SEQUENCE predict ion
在线阅读 下载PDF
Equivalency and unbiasedness of grey prediction models 被引量:4
20
作者 Bo Zeng Chuan Li +1 位作者 Guo Chen Xianjun Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期110-118,共9页
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results sh... In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples. 展开更多
关键词 system modeling grey prediction models equivalency and unbiasedness
在线阅读 下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部