In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel...In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.展开更多
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame...Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.展开更多
There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previou...There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.展开更多
The Essential Climate Variables(ECVs),such as the atmospheric thermodynamic state variables and greenhouse gases,play an important role in the atmosphere physical processes and global climate change.Given the need of ...The Essential Climate Variables(ECVs),such as the atmospheric thermodynamic state variables and greenhouse gases,play an important role in the atmosphere physical processes and global climate change.Given the need of improvements in existing ground-based and satellite observations to successfully deliver atmosphere and climate benchmark data and reduce data ambiguity,the Climate and Atmospheric Composition Exploring Satellites mission(CACES)was proposed and selected as a candidate mission of the Strategic Priority Research Program of Chinese Academy Science(SPRPCAS).This paper presents an overview of the key scientific questions and responses of EC Vs in relation to global change;the principles,algorithms,and payloads of microwave occultation using centimeter and millimeter wave signals between low Earth orbit satellites(LEO-LEO microwave occultation,LMO)as well as of the LEO-LEO infrared-laser occultation(LIO);the CACES mission with its scientific objectives,mission concept,spacecraft and instrumentation.展开更多
Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse...Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse tomato (Lycopersicum esculentum Mill.) to examine the effect of two bacterial strains, Bacillus subtilis (CGMCC 1.3343) and Pseudomonas fluorescens (CGMCC 1.1802), on tomato growth, gray mold disease control, catabolic and genetic microbial features of indigenous rhizosphere bacteria under lownitrogen conditions. A commercial inoculant (ETS) was also tested as a comparison. Both B. subtilis and P. fluorescens promoted growth and biomass of seedlings, while only B. subtilis was efficient in reducing gray mold incidence in greenhouse tomato. The two bacterial strains could colonization in tomato rhizosphere soil at the end of experiment (10 days after the last inoculation). Different AWCD trends and DGGE patterns were got in different bacterial treatments; however, analyses of microbial diversities showed that indigenous soil microbes did not seem to have significant differences at either the catabolic or genetic level among treatments. ETS, as a commercial microbial agent, promoted plant growth and gave a higher microbial diversity in rhizosphere soil.展开更多
To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, name...To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve; 2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin's waste management system as it reduces GHG emissions and costs.展开更多
After ground-mulching in plastic house.it is shown that it may display obvious effect on soil temperature.increase,but almost no effect on the internal air temperature,and light conditions can be improved,but the side...After ground-mulching in plastic house.it is shown that it may display obvious effect on soil temperature.increase,but almost no effect on the internal air temperature,and light conditions can be improved,but the side effects were presented on the relative humidity and the concentration of carbon dioxide.展开更多
The reseach carried out study to intelligent environmental control system of greenhouse and designed suitable new-type greenhouse environmental control system where crops grew. Explained the basic principle of every e...The reseach carried out study to intelligent environmental control system of greenhouse and designed suitable new-type greenhouse environmental control system where crops grew. Explained the basic principle of every environmental factor and concrete to realize of control system in detail at the same time.展开更多
Greenhouse horticultural production currently represents an important and growing sector of Canada's food and plant production systems. Since 2006,the value of greenhouse vegetable crops in Canada exceeds that of ...Greenhouse horticultural production currently represents an important and growing sector of Canada's food and plant production systems. Since 2006,the value of greenhouse vegetable crops in Canada exceeds that of field grown crops,signaling an important shift in the way food is cultivated in the country. While many factors have contributed to this change,a major area of innovation includes the discoveries and advances made in the development of commercial greenhouse production systems as well as the integration of biological control strategies for sustainable pest management. With this focus,this review offers a brief overview of the Canadian greenhouse industry,including a descriptive list of commonly used biological control organisms,as well as the role Canadian research has played in the development of these agents. We also address the threats that Canadian greenhouse producers face by invasive pests and the complications these have created for the commercialization of novel biological control agents. This information may serve as a guide for the development of parallel technologies and tools in other parts of the world where greenhouse production is expanding.展开更多
IGLP-62 multi-purpose small-sized rotary tiller is a tool of production urgently needed for “Vegetable Supplying System”in China. It is mainly used for rotary cultivation as well as for fertilizer mixing and stubble...IGLP-62 multi-purpose small-sized rotary tiller is a tool of production urgently needed for “Vegetable Supplying System”in China. It is mainly used for rotary cultivation as well as for fertilizer mixing and stubble mulching in greenhouses. And it can be used for open vegetable plots and orchards as well. The machine is characterized by the integration of rotary tilling with driving. It has a good performance of clod crushing and high capacity. It is equipped with a power-take-off shaft to drive a water pump, thresher or rice mill. Thus the machine solved the long-standing problem of heavy manual labour in greenhouses. So it is a kind of ideal hand cultivation machinery of horticultural type.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱcould well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternati...This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.展开更多
Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is...Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract展开更多
Surface ozone is among the greenhouse gases which form a blanket that causes the heat trapping effect and warms the atmosphere with related consequences such as atmospheric temperature rise. The aim of this study is t...Surface ozone is among the greenhouse gases which form a blanket that causes the heat trapping effect and warms the atmosphere with related consequences such as atmospheric temperature rise. The aim of this study is to investigate the temporal relationship between the meteorological conditions and the surface ozone concentrations.In this study surface ozone and meteorological measurements展开更多
Epidemic of cotton leaf curl virus disease(CLCD)was the compelling factor to devise newstrategies in cotton breeding programs ofPakistan.The evaluation of cotton genotypesagainst the CLCD resistance is difficult,expen...Epidemic of cotton leaf curl virus disease(CLCD)was the compelling factor to devise newstrategies in cotton breeding programs ofPakistan.The evaluation of cotton genotypesagainst the CLCD resistance is difficult,expensive and time consuming in field andespecially in greenhouse due to unevendistribution of the disease.A展开更多
Environmental crisis: serious greenhouse effect, destroyed ozonosphere, acid rain pollution, water resources cri-sis, land desertization, forest decrease, water and soil loss, species deracination, poisonous chemical ...Environmental crisis: serious greenhouse effect, destroyed ozonosphere, acid rain pollution, water resources cri-sis, land desertization, forest decrease, water and soil loss, species deracination, poisonous chemical pollution...... Dripping andleakage phenomena during chemical process, not only cause economic losses but also cause serious pollution accident and also could damage people's health. Develop green chemical industry and adopt green technology are the important ways to reduce pollution and to advance chemical sustainable development.展开更多
With growing economic and social development, carbon emissions caused by energy consumption surge, leading to an exacerbated greenhouse effect, rising average temperatures,melting glaciers, and an unstable global clim...With growing economic and social development, carbon emissions caused by energy consumption surge, leading to an exacerbated greenhouse effect, rising average temperatures,melting glaciers, and an unstable global climate,which may all result in more destructive natural disasters.展开更多
基金2024 Science and Technology Commissioner Service Group's Emergency Science and Technology Research Project for Wind Disaster Relief in Hainan Province(ZDYF2024YJGG002-8)China Huaneng Group Co.,Ltd.Headquarters Technology Project,Optimization of Photovoltaic Vegetable Greenhouse Structure and Research on Planting Agronomy in Tropical Regions(HNKJ22-HF77)。
文摘In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.
文摘Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse.
基金Supported by the 13th Five-year National Key R&D Program:Development and Verification of Information Perception and Environment Intelligent Control System for Dairy Cattle and Beef Cattle(2016YFD0700204-02)Quality and Brand Construction of "Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘There are some disadvantages, such as complicated wiring, high cost, poor monitoring flexibility, low accuracy and high energy consumption in traditional greenhouse environment monitoring system which based on previous wireless sensor networks (WSN). Aiming at these problems, a greenhouse environmental parameter monitoring system had been designed based on internet of things technology in this paper. A set of control system with good robustness, strong adaptive ability and small overshoot was set up by combining the fuzzy proportion-integral-derivative (PID) control. The system was composed of a number of independent greenhouse monitoring systems. The server could provide remote monitoring access management services after the collected data were transmitted. The data transmission part of greenhouse was based on ZigBee networking protocol. And the data were sent to intelligent system via gateway connected to the internet. Compared to the classical PID control and fuzzy control, the fuzzy PID control could quickly and accurately adjust the corresponding parameters to the set target. The overshoot was also relatively small. The simulation results showed that the amount of overshoot was reduced 20% compared with classical PID control.
基金Supported by the National Natural Science Foundation of China(41775034,41606206)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA15012300)。
文摘The Essential Climate Variables(ECVs),such as the atmospheric thermodynamic state variables and greenhouse gases,play an important role in the atmosphere physical processes and global climate change.Given the need of improvements in existing ground-based and satellite observations to successfully deliver atmosphere and climate benchmark data and reduce data ambiguity,the Climate and Atmospheric Composition Exploring Satellites mission(CACES)was proposed and selected as a candidate mission of the Strategic Priority Research Program of Chinese Academy Science(SPRPCAS).This paper presents an overview of the key scientific questions and responses of EC Vs in relation to global change;the principles,algorithms,and payloads of microwave occultation using centimeter and millimeter wave signals between low Earth orbit satellites(LEO-LEO microwave occultation,LMO)as well as of the LEO-LEO infrared-laser occultation(LIO);the CACES mission with its scientific objectives,mission concept,spacecraft and instrumentation.
基金Supported by the National High-tech Research and Development Program of China(2013AA102903)
文摘Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse tomato (Lycopersicum esculentum Mill.) to examine the effect of two bacterial strains, Bacillus subtilis (CGMCC 1.3343) and Pseudomonas fluorescens (CGMCC 1.1802), on tomato growth, gray mold disease control, catabolic and genetic microbial features of indigenous rhizosphere bacteria under lownitrogen conditions. A commercial inoculant (ETS) was also tested as a comparison. Both B. subtilis and P. fluorescens promoted growth and biomass of seedlings, while only B. subtilis was efficient in reducing gray mold incidence in greenhouse tomato. The two bacterial strains could colonization in tomato rhizosphere soil at the end of experiment (10 days after the last inoculation). Different AWCD trends and DGGE patterns were got in different bacterial treatments; however, analyses of microbial diversities showed that indigenous soil microbes did not seem to have significant differences at either the catabolic or genetic level among treatments. ETS, as a commercial microbial agent, promoted plant growth and gave a higher microbial diversity in rhizosphere soil.
基金Project(51406133) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas,ChinaProject supported by Independent Innovation Fund of Tianjin University,China
文摘To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve; 2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin's waste management system as it reduces GHG emissions and costs.
文摘After ground-mulching in plastic house.it is shown that it may display obvious effect on soil temperature.increase,but almost no effect on the internal air temperature,and light conditions can be improved,but the side effects were presented on the relative humidity and the concentration of carbon dioxide.
文摘The reseach carried out study to intelligent environmental control system of greenhouse and designed suitable new-type greenhouse environmental control system where crops grew. Explained the basic principle of every environmental factor and concrete to realize of control system in detail at the same time.
文摘Greenhouse horticultural production currently represents an important and growing sector of Canada's food and plant production systems. Since 2006,the value of greenhouse vegetable crops in Canada exceeds that of field grown crops,signaling an important shift in the way food is cultivated in the country. While many factors have contributed to this change,a major area of innovation includes the discoveries and advances made in the development of commercial greenhouse production systems as well as the integration of biological control strategies for sustainable pest management. With this focus,this review offers a brief overview of the Canadian greenhouse industry,including a descriptive list of commonly used biological control organisms,as well as the role Canadian research has played in the development of these agents. We also address the threats that Canadian greenhouse producers face by invasive pests and the complications these have created for the commercialization of novel biological control agents. This information may serve as a guide for the development of parallel technologies and tools in other parts of the world where greenhouse production is expanding.
文摘IGLP-62 multi-purpose small-sized rotary tiller is a tool of production urgently needed for “Vegetable Supplying System”in China. It is mainly used for rotary cultivation as well as for fertilizer mixing and stubble mulching in greenhouses. And it can be used for open vegetable plots and orchards as well. The machine is characterized by the integration of rotary tilling with driving. It has a good performance of clod crushing and high capacity. It is equipped with a power-take-off shaft to drive a water pump, thresher or rice mill. Thus the machine solved the long-standing problem of heavy manual labour in greenhouses. So it is a kind of ideal hand cultivation machinery of horticultural type.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱcould well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
文摘This review presents a comprehensive techno-economic and life-cycle assessment of sustainable aviation fuel(SAF)production from biomass.The critical need for transitioning towards environmentally sustainable alternatives for liquid fuel and aviation industry is first discussed.Key insights encompass the evolutionary progression of biofuel production from first-generation to second-generation biofuels,with a focus on utilizing non-food sources like woody biomass for enhanced sustainability.Available data from the literature on techno-economic assessments of various SAF production pathways are analyzed including production costs,conversion efficiency,and scalability.Moreover,results of lifecycle assessments associated with different SAF production pathways are presented,providing essential insights for decision-making processes.The challenges of scaling up woody biomass-based SAF production are discussed based on the assessment results,and recommendations are proposed to steer stakeholders towards a greener and more sustainable trajectory for aviation operations.
文摘Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract
文摘Surface ozone is among the greenhouse gases which form a blanket that causes the heat trapping effect and warms the atmosphere with related consequences such as atmospheric temperature rise. The aim of this study is to investigate the temporal relationship between the meteorological conditions and the surface ozone concentrations.In this study surface ozone and meteorological measurements
文摘Epidemic of cotton leaf curl virus disease(CLCD)was the compelling factor to devise newstrategies in cotton breeding programs ofPakistan.The evaluation of cotton genotypesagainst the CLCD resistance is difficult,expensive and time consuming in field andespecially in greenhouse due to unevendistribution of the disease.A
文摘Environmental crisis: serious greenhouse effect, destroyed ozonosphere, acid rain pollution, water resources cri-sis, land desertization, forest decrease, water and soil loss, species deracination, poisonous chemical pollution...... Dripping andleakage phenomena during chemical process, not only cause economic losses but also cause serious pollution accident and also could damage people's health. Develop green chemical industry and adopt green technology are the important ways to reduce pollution and to advance chemical sustainable development.
文摘With growing economic and social development, carbon emissions caused by energy consumption surge, leading to an exacerbated greenhouse effect, rising average temperatures,melting glaciers, and an unstable global climate,which may all result in more destructive natural disasters.