The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ...The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba...In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.展开更多
The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation th...The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation that the technique can only be applied to horizons. Based on the texture technique, the texture coherence algorithm uses seismic information in different directions and differences among multiple traces. It can not only calculate seismic coherence in in-line and cross-line directions but also in all other directions. In this study, we suggested first an optimization method and a criterion for constructing the gray level co-occurrence matrix of the seismic texture coherence algorithm. Then the co-occurrence matrix was prepared to evaluate differences among multiple traces. Compared with the C1 algorithm, the seismic texture coherence algorithm suggested in this paper is better than the C1 in its information extraction and application. Furthermore, it implements the multi-direction information fusion and it, also has the advantage of simplicity and effectiveness, and improves the resolution of the seismic profile. Application of the method to field data shows that the texture coherence attribute is superior to that of C 1 and that it has merits in identification of faults and channels.展开更多
The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divi...The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divided into blocks. Then,the blocks are highlighted by frequency-tuned salient algorithm. Simultaneously,gray-level co-occurrence matrix is used to extract the characteristic value of each rectangular patch. Finally,PNN is used to detect the defect on the fabric image. The performance of proposed algorithm is estimated off-line by two sets of fabric defect images. The theoretical argument is supported by experimental results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.5147113 and 51505037)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.3102017zy029,310832163402,and 310832163403)
文摘The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.
基金Projects 40771143 supported by the National Natural Science Foundation of China2007AA12Z162 by the Hi-tech Research and Development Program of China
文摘In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.
基金supported by National "973" Program (No. 2013CB228600)
文摘The first generation coherence algorithm (the C1 algorithm) that calculates the coherence of seismic data in-line and cross-line was developed using statistical cross-correlation theory, and it has the limitation that the technique can only be applied to horizons. Based on the texture technique, the texture coherence algorithm uses seismic information in different directions and differences among multiple traces. It can not only calculate seismic coherence in in-line and cross-line directions but also in all other directions. In this study, we suggested first an optimization method and a criterion for constructing the gray level co-occurrence matrix of the seismic texture coherence algorithm. Then the co-occurrence matrix was prepared to evaluate differences among multiple traces. Compared with the C1 algorithm, the seismic texture coherence algorithm suggested in this paper is better than the C1 in its information extraction and application. Furthermore, it implements the multi-direction information fusion and it, also has the advantage of simplicity and effectiveness, and improves the resolution of the seismic profile. Application of the method to field data shows that the texture coherence attribute is superior to that of C 1 and that it has merits in identification of faults and channels.
文摘The correct rate of detection for fabric defect is affected by low contrast of images. Aiming at the problem,frequencytuned salient map is used to detect the fabric defect. Firstly,the images of fabric defect are divided into blocks. Then,the blocks are highlighted by frequency-tuned salient algorithm. Simultaneously,gray-level co-occurrence matrix is used to extract the characteristic value of each rectangular patch. Finally,PNN is used to detect the defect on the fabric image. The performance of proposed algorithm is estimated off-line by two sets of fabric defect images. The theoretical argument is supported by experimental results.