期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
1
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
2
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机
在线阅读 下载PDF
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
3
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
基于算法优化极限学习机的香芋皮改性膳食纤维制备及其NO_(2)^(-)吸附量预测
4
作者 邓忠惠 谢微 《中国无机分析化学》 北大核心 2025年第6期889-897,共9页
在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜... 在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)和海鸥算法(SOA)对ELM进行优化。使用训练数据集对优化后的ELM模型进行训练。使用测试数据集对模型进行验证,评估模型的性能指标。结果显示,5种优化后的ELM模型在各项性能指标上均优于初始ELM模型。在5种优化算法中,SSA-ELM模型表现最为显著,其绝对误差(MAE)、均方误差(MSE)、均方误差根(RMSE)、平均绝对百分比误差(MAPE)分别为0.023498、0.0007391、0.027186和0.037267%,是所有优化算法测试模型中最低值。在测试模型中,原始ELM模型的R^(2)为0.013291,而GA-ELM、PSO-ELM、SSA-ELM、GWO-ELM和SOA-ELM模型的R^(2)分别0.86709、0.98016、0.99971、0.99998和0.99969。这表明5种优化ELM模型具有更高的拟合度、更好的泛化能力和稳定性,且相对于原始ELM模型,R^(2)值有显著提升。优化后的ELM模型,可以快速、准确地预测不同工艺条件下香芋皮改性膳食纤维的NO_(2)^(-)吸附量,减少实验成本和时间,提高生产效率和产品质量,为实际应用提供可靠的预测工具。 展开更多
关键词 香芋皮改性膳食纤维 响应面法 极限学习机 算法优化 预测
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法
5
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
基于RPCA-GELM数据驱动的保护测量回路误差评估
6
作者 李振兴 龚世玉 《电力系统保护与控制》 北大核心 2025年第8期24-33,共10页
保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive princip... 保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive principal component analysis and extreme learning machine optimized by grey wolf optimization,RPCA-GELM)数据驱动的保护测量回路误差评估方法。首先基于电力系统正常运行下历史数据与实时数据,应用RPCA技术在线更新主元特征模型以缩短评估时间,进一步引入4种统计算法生成4类误差监测特征量,构建误差综合评判方法进行特征优选,提升误差评估准确率。然后针对模型评估精度取决于关键参数C、σ,引入国际无限折叠混沌映射策略对灰狼算法进行优化,以提升参数寻优精度和收敛速度,在此基础上结合ELM算法提出了基于GELM的保护测量回路误差评估方法。最后通过多组对比实验验证了所提方法能实现模型性能优化,且相对其他方法有效提升了保护测量回路误差评估准确率与精度。 展开更多
关键词 保护测量回路 误差评估 递推主元分析 灰狼算法 极限学习机
在线阅读 下载PDF
二元混合气体成分检测的改进蒲公英算法研究
7
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
8
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:3
9
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
基于PSO-WELM的不平衡OAM识别模型研究
10
作者 梁瑞悦 于海洋 +3 位作者 陈纯毅 倪小龙 胡小娟 李延风 《光通信技术》 北大核心 2025年第3期67-72,共6页
针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量... 针对标签分布不平衡的轨道角动量(OAM)识别问题,提出了基于粒子群优化(PSO)算法的加权极限学习机(WELM)识别模型。该模型利用PSO算法对WELM的输入权重和偏置进行联合优化,提高了WELM的稳定性和鲁棒性。对比分析了PSO-WELM模型与支持向量机(SVM)、深度学习(DL)、反向传播人工神经网络(BP-ANN)模型的性能。实验结果表明:PSO-WELM模型在较弱湍流强度下能够完全正确识别少数类、多数类OAM光束;在中等湍流强度下,PSO-WELM模型的各项评价指标值均优于对比方法,证明了该模型在识别不平衡状态OAM光束方面具有可行性和有效性。 展开更多
关键词 不平衡数据 轨道角动量 机器学习 粒子群优化算法 极限学习机
在线阅读 下载PDF
基于集成学习的混凝土抗压强度预测模型研究
11
作者 周继发 曾晓辉 +8 位作者 郑振华 涂金根 郭桃明 孙晗凌 谢友均 龙广成 唐卓 郭宏 潘自立 《中南大学学报(自然科学版)》 北大核心 2025年第5期1981-1992,共12页
为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;... 为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;其次,评估模型在训练集和测试集上的效果,验证GWO对LGBM超参数优化的有效性;第三,将模型应用于全新数据,检验其泛化能力;最后,基于GWO-LGBM模型分析各输入参数对抗压强度的影响,验证模型的预测合理性。研究结果表明:GWOLGBM模型在训练集和测试集中混凝土抗压强度预测的均方根误差分别为1.68 MPa和3.49 MPa,预测值与实际值的拟合度分别达到0.99和0.95,解决了LGBM易陷入局部最优的问题;模型迁移到全新数据集时,83%的数据预测相对误差小于10%,展现出较强的泛化能力。水胶比增大会降低混凝土抗压强度;矿渣和粉煤灰掺量增加会降低混凝土早期强度,对后期强度影响较小;当水胶比一定时,存在一个最佳砂率使抗压强度最大;模型捕获结果与影响抗压强度的理论结果一致,验证了其预测结果的合理性。 展开更多
关键词 混凝土 抗压强度 集成学习 轻量级梯度提升机 灰狼优化算法
在线阅读 下载PDF
基于多变量变分模态分解与相关性重构的日径流预测模型
12
作者 丁杰 涂鹏飞 +1 位作者 冯谕 曾怀恩 《长江科学院院报》 北大核心 2025年第5期119-129,共11页
准确预测径流是预防洪涝灾害的基础。针对这一问题,提出一种基于多变量变分模态分解与皮尔逊相关性重构的日经流预测组合模型,该模型首先运用多变量变分模态分解(MVMD)方法分解日径流数据,然后,针对分解后的模态分量,运用皮尔逊相关系... 准确预测径流是预防洪涝灾害的基础。针对这一问题,提出一种基于多变量变分模态分解与皮尔逊相关性重构的日经流预测组合模型,该模型首先运用多变量变分模态分解(MVMD)方法分解日径流数据,然后,针对分解后的模态分量,运用皮尔逊相关系数法对该分量进行重构分类为波动项和随机项,运用思维进化算法(MEA)优化BP神经网络对波动项进行预测;运用灰狼优化算法(GWO)优化极限学习机算法(ELM)对随机项进行预测。最后,对两个模态分量预测融合得出最终预测结果。以汉江流域中的安康水电站与白河水电站径流数据为例进行分析,结果表明:安康站平均R^(2)为0.87,白河站平均R^(2)为0.93,预测模型预测效果较好、准确性较高,具有预测合理性。研究结果可为预防洪涝灾害和合理调控水资源提供依据。 展开更多
关键词 多变量变分模态分解 相关性重构 思维进化算法 BP神经网络 灰狼优化算法 极限学习机算法
在线阅读 下载PDF
基于深度极限学习机的暂态稳定预防控制方法
13
作者 刘颂凯 曾羽聪 +5 位作者 张磊 李彦彰 王秋杰 刘龙成 陈萍 赵文博 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期64-74,共11页
在电力系统暂态稳定预防控制中时域仿真计算复杂,同时系统存在样本不平衡问题,影响机器学习模型的性能。针对上述问题,本文提出一种基于深度极限学习机(deep extreme learning machine,DELM)的暂态稳定预防控制方法。首先采用过采样技... 在电力系统暂态稳定预防控制中时域仿真计算复杂,同时系统存在样本不平衡问题,影响机器学习模型的性能。针对上述问题,本文提出一种基于深度极限学习机(deep extreme learning machine,DELM)的暂态稳定预防控制方法。首先采用过采样技术处理样本不平衡;然后利用DELM发现平衡数据集的潜在信息,建立电力系统运行特征和暂态稳定指标之间的映射模型,在预防控制中引入基于DELM的暂态稳定预测模型来代替暂态稳定约束最优潮流(transient stability constrained optimal power flow,TSCOPF)模型中含微分代数方程的暂态稳定约束,减少计算复杂度,并采用萤火虫算法对模型进行求解,获取最终策略;最后在IEEE 39节点系统进行仿真验证。结果表明,在预防故障发生时,本文所提的预防控制方法能够以2042美元的优化调整成本实现系统暂态稳定性的提高,将暂态失稳的情况调节为稳定,且采用的萤火虫算法求解的计算时间可以控制在20 s以内,表明本文提出的基于DELM暂态稳定预防控制方法能够有效提升系统的暂态稳定性,且在具有较快的计算速度的同时具有良好的经济性。 展开更多
关键词 暂态稳定 预防控制 最优潮流 样本不平衡 深度极限学习机 萤火虫算法
在线阅读 下载PDF
基于灰狼算法优化深度极限学习机的钢轨热处理性能预测模型
14
作者 蔡里批 李硕 丁敬国 《材料与冶金学报》 北大核心 2025年第2期162-170,共9页
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learn... 为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learning machine,GWO-DELM)的钢轨热处理性能预测模型.先采用深度极限学习机(DELM)构建出工艺模型,而后,针对深度极限学习机中初始权值随机确定而引起的预测结果准确度较低的问题,利用灰狼优化算法(GWO)对初始权值进一步确定.结果表明:该模型在预测不同规格钢轨的抗拉强度时,95.80%以上样本点的预测误差集中在-20~20 MPa,在预测踏面布氏硬度时,95.73%以上样本点的预测误差集中在-8~8;与传统模型相比,GWO-DELM具有更优异的预测精度及泛化能力,可应用在热轧钢轨风冷处理的性能预测上,为热处理参数的选择提供参考. 展开更多
关键词 钢轨热处理 灰狼优化算法 深度极限学习机 性能参数预测
在线阅读 下载PDF
基于不平衡数据的船舶压载水系统故障诊断研究
15
作者 郭骞 曹辉 +1 位作者 樊智博 宋志豪 《舰船科学技术》 北大核心 2025年第14期74-81,共8页
针对船舶压载水系统故障样本不均衡且故障诊断精度较低,传统鲸鱼优化算法(WOA)易陷入局部最优、全局搜索能力不足等问题,提出一种基于自适应合成过采样方法(ADASYN)的故障数据均衡化方法,结合改进鲸鱼优化算法(IWOA)优化极限学习机(ELM... 针对船舶压载水系统故障样本不均衡且故障诊断精度较低,传统鲸鱼优化算法(WOA)易陷入局部最优、全局搜索能力不足等问题,提出一种基于自适应合成过采样方法(ADASYN)的故障数据均衡化方法,结合改进鲸鱼优化算法(IWOA)优化极限学习机(ELM)的船舶压载水系统故障诊断模型。首先,对不平衡故障数据集采用随机森林算法(RF)进行特征重要性排序并对特征参数进行降维;其次,使用ADASYN对故障样本进行自适应过采样以平衡数据集;最后,通过引入最优邻域扰动、自适应权重、变螺旋位置更新等策略对WOA进行有效改进,并对ELM的权重和阈值进行优化,并利用优化后的ELM模型对故障数据进行诊断识别。实验结果表明,对少数类故障样本进行ADASYN扩充后,IWOA-ELM模型的故障诊断准确率为96.22%,与GWO-ELM、PSO-ELM、WOA-ELM模型相比,诊断精度分别提高了2.89%、3.44%和1.22%。 展开更多
关键词 ADASYN 鲸鱼优化算法 极限学习机 船舶压载水系统 故障诊断
在线阅读 下载PDF
基于改进优化算法的WELM月径流预测模型研究 被引量:1
16
作者 王应武 华春莉 茶建帮 《人民长江》 北大核心 2025年第2期82-90,共9页
针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO... 针对在月径流预测中将传统数据分解技术直接应用于整个时间序列时,在模型训练过程中会提前使用“未来信息”从而导致预测结果“不可信”的问题,提出两种不引入“未来信息”的小波包变换(WPT)-改进蝴蝶优化算法(IBOA)/改进海马优化(ISHO)算法-加权极限学习机(WELM)月径流时间序列预测模型。首先,将月径流时间序列划分为训练集和预测集,利用WPT分别对训练集和预测集进行分解处理,避免在训练过程中提前使用“预测集信息”;其次,通过6个典型函数验证IBOA/ISHO的寻优能力,利用IBOA/ISHO优化WELM输入层权值和隐含层偏差(简称“超参数”),建立WPT-IBOA/ISHO-WELM模型对各分解分量进行预测和重构;同时构建基于整个时间序列分解的WPT-IBOA/ISHO-WELM(全)模型,与其他4种优化算法和未经分解、未经优化的IBOA/ISHO-WELM、WPT-WELM模型作对比分析;最后,通过云南省李仙江流域把边、景东水文站月径流时间序列预测实例对各模型进行检验。结果表明:①WPT-IBOA-WELM、WPT-ISHO-WELM模型对把边、景东站月径流预测的平均绝对百分比误差(MAPE)为1.649%~1.897%,预测精度优于其他对比模型,具有更好的预测效果。②WPT-IBOA-WELM、WPT-ISHO-WELM模型的预测精度基本不受“未来信息”的影响,能客观真实反映出月径流预测效果,具有较好的实用意义。③IBOA/ISHO仿真精度和WELM超参数优化效果均优于其他优化算法,表明通过logistic映射等策略可以显著提升IBOA/ISHO优化性能。 展开更多
关键词 月径流预测 小波包变换 改进蝴蝶优化算法 改进海马优化算法 加权极限学习机 超参数优化 把边水文站 景东水文站 李仙江流域
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
17
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:1
18
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于AI算法的隧道衬砌冷缝检测分类研究
19
作者 冯源 邓立 +5 位作者 路景海 邓愿涛 孙武鹏 温先划 朱洪谷 吴佳晔 《铁道建筑》 北大核心 2025年第1期99-103,共5页
针对隧道衬砌冷缝,基于冲击弹性波面波的检测技术得到了较为广泛的应用,但其解析难度大,效率低。本文提出一种基于响应函数、核主成分分析法和核极限学习机的人工智能冷缝检测分类模型,实现了数据的自动分析及冷缝分类判别。进而通过对... 针对隧道衬砌冷缝,基于冲击弹性波面波的检测技术得到了较为广泛的应用,但其解析难度大,效率低。本文提出一种基于响应函数、核主成分分析法和核极限学习机的人工智能冷缝检测分类模型,实现了数据的自动分析及冷缝分类判别。进而通过对极限学习机关键参数优化方法的选取和改进,提升了模型的预测精度和泛化能力。实际验证结果表明,本文给出的方法具有较高的预测精度,且对冷缝有较低的漏检率,能够有效提升面波法检测衬砌冷缝的解析效率和精度。 展开更多
关键词 隧道衬砌 冷缝 检测 海鸥优化算法 核极限学习机
在线阅读 下载PDF
基于IDBO-HKELM的冷水机组故障诊断方法
20
作者 王宏 储盼 +3 位作者 管大松 郭洋 田增瑞 盛英杰 《科学技术与工程》 北大核心 2025年第22期9505-9513,共9页
冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习... 冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习机(hybrid kernel extreme learning machine,HKELM)融合的故障诊断模型,用于实现冷水机组早期故障的精确诊断。该模型首先采用混合核函数提高核极限学习机(kernel extreme learning machine,KELM)的学习能力和泛化性,其次将Bernoulli映射、自适应惯性因子和Levy飞行融合动态权重系数策略用于改进蜣螂优化算法(dung beetle optimizer,DBO),以平衡DBO算法的全局探索性能。最后通过基准函数验证IDBO算法的有效性,利用IDBO算法对HKELM超参数进行优化,从而构建用于冷水机组早期故障诊断的数据驱动模型。通过相关训练仿真和实验验证,所提出的IDBO-HKELM模型对冷水机组的早期故障诊断准确率提高到99.71%,对比其他算法具有明显优势。 展开更多
关键词 冷水机组 群体算法 HKELM IDBO算法 故障诊断
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部