期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Nowhere-zero 5-fows for graphs with bounded genus
1
作者 LI Jiaao SU Bo 《运筹学学报(中英文)》 北大核心 2025年第3期124-134,共11页
A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vert... A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vertex.This concept was introduced by Tutte as an extension of face colorings,and Tutte in 1954 conjectured that every bridgeless graph admits a nowhere-zero 5-flow,known as the 5-Flow Conjecture.This conjecture is verified for some graph classes and remains unresolved as of today.In this paper,we show that every bridgeless graph of Euler genus at most 20 admits a nowhere-zero 5-flow,which improves several known results. 展开更多
关键词 5-fow conjecture minimal counterexample graphs with bounded genus
在线阅读 下载PDF
Ramsey numbers of edge-critical graphs versus large generalized fans
2
作者 Taiping Jiang Xinmin Hou 《中国科学技术大学学报》 北大核心 2025年第5期62-66,61,I0002,共7页
Given two graphs G and H,the Ramsey number R(G,H)is the smallest positive integer N such that every 2-coloring of the edges of K_(N)contains either a red G or a blue H.Let K_(N-1)■K_(1,k)be the graph obtained from K_... Given two graphs G and H,the Ramsey number R(G,H)is the smallest positive integer N such that every 2-coloring of the edges of K_(N)contains either a red G or a blue H.Let K_(N-1)■K_(1,k)be the graph obtained from K_(N-1)by adding anew vertexνconnecting k vertices of K_(N-1).A graph G withχ(G)=k+1 is called edge-critical if G contains an edge e such thatχ(G-e)=k.A considerable amount of research has been conducted by previous scholars on Ramsey numbers ofgraphs.In this study,we show that for an edge-critical graph G with x(G)=k+1,when k≥2,1≥2,and n is sufficiently large,R(G,K_(1)+nK_(t))=knt+1 and r,(G,K_(1)+nK_(t))=(k-1)nt+1. 展开更多
关键词 Ramsey number color critical graph generalized fan
在线阅读 下载PDF
A multi-parametric path planning framework utilizing airspace visibility graphs for urban battlefield environments
3
作者 Sidao Chen Xuejun Zhang +1 位作者 Zuyao Zhang Jianxiang Ma 《Defence Technology(防务技术)》 2025年第9期112-126,共15页
Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threat... Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time. 展开更多
关键词 UAV Path planning Urban battlefield environment Airspace visibility graph ISOVIST
在线阅读 下载PDF
基于Context Graphs的主题爬虫的研究与实现 被引量:3
4
作者 陈星 《计算机工程与设计》 CSCD 北大核心 2011年第3期914-917,共4页
为了解决传统主题爬虫对主题网页搜索效率偏低的问题,分析了基于网络拓扑结构建模的Context Graphs的爬行策略。考虑了以往ContextGraphs方法存在的不足,即没有区分网页不同部分文本的重要程度,通过将锚文字、页面标题和页面内容做综合... 为了解决传统主题爬虫对主题网页搜索效率偏低的问题,分析了基于网络拓扑结构建模的Context Graphs的爬行策略。考虑了以往ContextGraphs方法存在的不足,即没有区分网页不同部分文本的重要程度,通过将锚文字、页面标题和页面内容做综合考虑,对原算法进行了改进。将改进前后的算法进行实验对比,实验结果表明,在提高主题爬行质量方面,改进后的算法达到了更好的效果。 展开更多
关键词 主题爬虫 CONTEXT graphs模型 层次建模 链接分析 内容分析
在线阅读 下载PDF
SOME CLASSES OF UPPER EMBEDDABLE GRAPHS 被引量:4
5
作者 黄元秋 刘彦佩 《数学物理学报(A辑)》 CSCD 北大核心 1997年第S1期154-161,共8页
In this paper, we provide a number of new classes of upper embeddable graphs which are with specific degrees, specific edges.
关键词 GRAPH MAXIMUM GENUS UPPER embeddable
在线阅读 下载PDF
Detection and recognition of LPI radar signals using visibility graphs 被引量:3
6
作者 WAN Tao JIANG Kaili +2 位作者 LIAO Jingyi TANG Yanli TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1186-1192,共7页
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l... The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches. 展开更多
关键词 DETECTION RECOGNITION visibility graph(VG) support vector machine(SVM) k-nearest neighbor(KNN)
在线阅读 下载PDF
大语言模型构建鼻炎医案知识图谱的应用研究
7
作者 李玥 洪海蓝 +1 位作者 李文林 杨涛 《计算机工程与应用》 北大核心 2025年第4期167-175,共9页
将大语言模型用于医案的自动化知识抽取,构建国医大师干祖望治疗鼻炎知识图谱,为中医药领域的智能化发展提供新思路和方法。采用干祖望教授的临床医案数据作为基础样本,使用OWL(Web ontology language)构建本体模型,确定抽取对象与关系... 将大语言模型用于医案的自动化知识抽取,构建国医大师干祖望治疗鼻炎知识图谱,为中医药领域的智能化发展提供新思路和方法。采用干祖望教授的临床医案数据作为基础样本,使用OWL(Web ontology language)构建本体模型,确定抽取对象与关系,再采用示范案例与关系列表结合的提示模板,引导大语言模型对医案数据进行自动化抽取实验,并使用Nebula Graph进行知识图谱的存储和可视化展示。与传统的知识抽取模型Bert-BiLSTM-CRF相比,ChatGPT4模型在综合指标上表现最佳,F1值达到82.75%,为快速处理非结构化医案数据提供了有效的解决方案,并实现了半自动化构建中医药领域知识图谱。利用大语言模型进行知识图谱构建,不仅为中医药领域的智能化提供了切实可行的方案,也为名老中医的诊疗经验传承和中医药知识图谱的快速构建贡献了新的研究思路,推动了中医药事业的发展。 展开更多
关键词 国医大师 干祖望 大语言模型 Nebula Graph
在线阅读 下载PDF
Earth Science in the Era of Foundation Models:How AlphaEarth is Reshaping Quantitative Geoscience
8
作者 CHENG Qiuming YANG Yilin +1 位作者 ZHOU Yuanzhi ZHANG Yuanzhi 《地学前缘》 北大核心 2025年第6期396-410,共15页
Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from... Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches. 展开更多
关键词 large-scale models artificial intelligence mineral prospectivity mapping AlphaEarth knowledge graphs deep and covered mineral exploration
在线阅读 下载PDF
Discovering causal models for structural,construction and defense-related engineering phenomena
9
作者 M.Z.Naser 《Defence Technology(防务技术)》 2025年第1期60-79,共20页
Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(M... Causality,the science of cause and effect,has made it possible to create a new family of models.Such models are often referred to as causal models.Unlike those of mathematical,numerical,empirical,or machine learning(ML)nature,causal models hope to tie the cause(s)to the effect(s)pertaining to a phenomenon(i.e.,data generating process)through causal principles.This paper presents one of the first works at creating causal models in the area of structural and construction engineering.To this end,this paper starts with a brief review of the principles of causality and then adopts four causal discovery algorithms,namely,PC(Peter-Clark),FCI(fast causal inference),GES(greedy equivalence search),and GRa SP(greedy relaxation of the sparsest permutation),have been used to examine four phenomena,including predicting the load-bearing capacity of axially loaded members,fire resistance of structural members,shear strength of beams,and resistance of walls against impulsive(blast)loading.Findings from this study reveal the possibility and merit of discovering complete and partial causal models.Finally,this study also proposes two simple metrics that can help assess the performance of causal discovery algorithms. 展开更多
关键词 CAUSALITY Causal discovery Directed acyclic graphs Machine learning Metrics
在线阅读 下载PDF
列控车载设备故障诊断的知识图谱构建与应用 被引量:2
10
作者 刘丹 张振海 +1 位作者 翟秋宇 余家乐 《铁道标准设计》 北大核心 2025年第5期184-192,共9页
车载设备是列车运行控制系统的核心组成部分,为减少车载设备故障发生频次和故障处理的时间损耗,需要对车载设备的运行状态和故障现象进行准确地分析和诊断。知识图谱技术作为人工智能领域的研究热点,在现有传统故障诊断方法未有效利用... 车载设备是列车运行控制系统的核心组成部分,为减少车载设备故障发生频次和故障处理的时间损耗,需要对车载设备的运行状态和故障现象进行准确地分析和诊断。知识图谱技术作为人工智能领域的研究热点,在现有传统故障诊断方法未有效利用非结构化的先验知识和处理结果不具解释性的问题上可提供新的解决思路,因此,提出一种基于知识图谱的列控车载设备故障诊断方法。实体识别是构建图谱的关键技术之一,结合传统中文实体识别方法存在识别效果不佳和全局语义难以共享问题,采用Graph Attention和CRF相结合的神经网络模型来实现实体识别。首先,以近三年某铁路局的列控车载设备典型故障分析报告作为实验数据集进行预处理;接着,对Graph Attention神经网络模型进行训练与优化,由条件随机场模型(CRF)得到最优的文本标签序列;为验证该方法在实体识别中的有效性,在同一语料环境下,将Graph Attention-CRF神经网络模型与其他3种模型作对比,结果表明,本文提出的模型F1值可达94.24%,实体识别准确率较当前主流的BiLSTM-CRF模型提升4.51%,较FLAT模型提升2.42%,测试时间也只比用时最短的BiLSTM-CRF模型多0.41 s。最后,利用设定的关系匹配规则将识别的实体进行链接和匹配来完成包含车载设备故障信息的知识图谱,并以图谱问答的故障诊断方式给维修工作人员提供决策辅助。 展开更多
关键词 列控车载设备 故障诊断 知识图谱 Graph Attention-CRF算法 智能问答 辅助决策
在线阅读 下载PDF
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:2
11
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 Graph Transformer 图表示学习 节点分类
在线阅读 下载PDF
融合图Transformer和Vina-GPU+的多模态虚拟筛选新方法
12
作者 张豪 张堃然 +2 位作者 阮晓东 沐勇 吴建盛 《南京大学学报(自然科学版)》 北大核心 2025年第1期83-93,共11页
现代药物发现面临对大规模化合物库进行虚拟筛选的挑战,提高分子对接的速度与精度是核心问题.AutoDock Vina是最受欢迎的分子对接工具之一,我们的Vina-GPU和Vina-GPU+方法在确保对接准确性的同时,分别实现了对AutoDock Vina最高50倍和6... 现代药物发现面临对大规模化合物库进行虚拟筛选的挑战,提高分子对接的速度与精度是核心问题.AutoDock Vina是最受欢迎的分子对接工具之一,我们的Vina-GPU和Vina-GPU+方法在确保对接准确性的同时,分别实现了对AutoDock Vina最高50倍和65.6倍的加速.近年来,大规模预训练模型在自然语言处理和计算机视觉领域取得了巨大成功,这种范式对解决虚拟筛选面临的重大挑战也具有巨大潜力.因此,提出一种多模态虚拟筛选新方法Vina-GPU GT,结合了Vina-GPU+分子对接技术和预训练的Graph Transformer(GT)模型,以实现快速精确的虚拟筛选.该方法包括三个连续步骤:(1)通过对已有分子属性预测的预训练GT模型进行知识蒸馏,学到一个小的SMILES Transformer(ST)模型;(2)通过ST模型推理化合物库中所有分子,并根据主动学习规则微调ST模型;(3)利用微调后的ST模型进行虚拟筛选.在三个重要靶点和两个化合物库上进行了虚拟筛选实验,并与两种虚拟筛选方法进行了比较,结果表明,Vina-GPU GT的虚拟筛选性能最优. 展开更多
关键词 虚拟筛选 Graph Transformer Vina-GPU+ 多模态 知识蒸馏 主动学习
在线阅读 下载PDF
基于图神经网络的多粒度软件系统交互关系预测
13
作者 邓文涛 程璨 +2 位作者 何鹏 陈孟瑶 李兵 《软件学报》 北大核心 2025年第5期2043-2063,共21页
当下,软件系统中元素间的交互错综复杂,涵盖了包间、类间和函数间等多种关系.准确理解这些关系对于优化系统结构以及提高软件质量至关重要.分析包间关系有助于揭示模块间的依赖性,有利于开发者更好地管理和组织软件架构;而类间关系的明... 当下,软件系统中元素间的交互错综复杂,涵盖了包间、类间和函数间等多种关系.准确理解这些关系对于优化系统结构以及提高软件质量至关重要.分析包间关系有助于揭示模块间的依赖性,有利于开发者更好地管理和组织软件架构;而类间关系的明晰理解则有助于构建更具扩展性和可维护性的代码库;清晰了解函数间关系则能够迅速定位和解决程序中的逻辑错误,提升软件的鲁棒性和可靠性.然而,现有的软件系统交互关系预测存在着粒度差异、特征不足和版本变化等问题.针对这一挑战,从软件包、类和函数这3种粒度构建相应的软件网络模型,并提出一种结合局部和全局特征的全新方法,通过软件网络的特征提取和链路预测方式,来增强对软件系统的分析和预测.该方法基于软件网络的构建和处理,具体步骤包括利用node2vec方法学习软件网络的局部特征,并结合拉普拉斯特征向量编码以综合表征节点的全局位置信息.随后,利用Graph Transformer模型进一步优化节点属性的特征向量,最终完成软件系统的交互关系预测任务.在3个Java开源项目上进行广泛的实验验证,包括版本内和跨版本的交互关系预测任务.实验结果显示,相较于基准方法,所提方法在版本内的预测任务中,平均AUC和AP值分别提升8.2%和8.5%;在跨版本预测任务中,平均AUC和AP值分别提升3.5%和2.4%. 展开更多
关键词 软件网络 交互关系预测 Graph Transformer 粒度差异 软件质量
在线阅读 下载PDF
结合全局信息和局部信息的三维网格分割框架
14
作者 张梦瑶 周杰 +1 位作者 李文婷 赵勇 《浙江大学学报(工学版)》 北大核心 2025年第5期912-919,共8页
针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG... 针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG模块利用Graph Transformer的全局自注意力机制和GCN的局部连接性质,不仅可以捕获全局信息,还能够加强局部精细信息的提取.为了更好地保留边界区域的信息,设计边缘保持的粗化算法,可以使粗化过程仅作用在非边界区域.利用边界信息对损失函数进行加权,提高了神经网络对边界区域的关注程度.在实验方面,通过视觉效果和定量比较证明了采用本文算法能够获得高质量的分割结果,利用消融实验表明了GTG模块和边缘保持粗化算法的有效性. 展开更多
关键词 三维网格 网格分割 Graph Transformer 图卷积神经网络(GCN) 边缘保持的粗化算法
在线阅读 下载PDF
A new explicit construction of unique-neighbor expanders
15
作者 Weiqi Zhu 《中国科学技术大学学报》 北大核心 2025年第5期51-60,50,I0002,共12页
For every integer 4≤d≤11,an explicit construction of infinite families of 2d-regular unique-neighbor expanders is presented,which is a generalization of the 6-regular unique-neighbors initially developed by Alon and... For every integer 4≤d≤11,an explicit construction of infinite families of 2d-regular unique-neighbor expanders is presented,which is a generalization of the 6-regular unique-neighbors initially developed by Alon and Capalbo.Additionally,for values of d greater than 11,a sufficient condition is established for employing the same construction method.Our construction method involves the“line product”of large bipartite Ramanujan graphs and a sufficiently good unique-neighbor expander(a small gadget). 展开更多
关键词 unique-neighbor expander Ramanujan graph line product
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
16
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
17
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
Knowledge map of online public opinions for emergencies
18
作者 GUAN Shuang FANG Zihan WANG Changfeng 《Journal of Systems Engineering and Electronics》 2025年第2期436-445,共10页
With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizati... With the popularization of social media,public opi-nion information on emergencies spreads rapidly on the Internet,the impact of negative public opinions on an event has become more significant.Based on the organizational form of public opinion information,the knowledge graph is used to construct the knowledge base of public opinion risk cases on the emer-gency network.The emotion recognition model of negative pub-lic opinion information based on the bi-directional long short-term memory(BiLSTM)network is studied in the model layer design,and a linear discriminant analysis(LDA)topic extraction method combined with association rules is proposed to extract and mine the semantics of negative public opinion topics to real-ize further in-depth analysis of information topics.Focusing on public health emergencies,knowledge acquisition and knowl-edge processing of public opinion information are conducted,and the experimental results show that the knowledge graph framework based on the construction can facilitate in-depth theme evolution analysis of public opinion events,thus demon-strating important research significance for reducing online pub-lic opinion risks. 展开更多
关键词 knowledge graph sentiment classification topic extraction association rule.
在线阅读 下载PDF
Factor graph method for target state estimation in bearing-only sensor network
19
作者 CHEN Zhan FANG Yangwang +1 位作者 ZHANG Ruitao FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第2期380-396,共17页
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.... For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method. 展开更多
关键词 factor graph cubature information filtering bearing-only sensor network state estimation
在线阅读 下载PDF
Knowledge graph construction and complementation for research projects
20
作者 LI Tongxin LIN Mu +2 位作者 WANG Weiping LI Xiaobo WANG Tao 《Journal of Systems Engineering and Electronics》 2025年第3期725-735,共11页
Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often comple... Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often complex and inadequate,making it challenging for researchers to conduct in-depth data mining to improve policies or management.To address this problem,this paper adopts a top-down approach to construct a knowledge graph(KG)for research projects.Firstly,we construct an integrated ontology by referring to the metamodel of various architectures,which is called the meta-model integration conceptual reference model.Subsequently,we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities,completing the construction of the KG for the research projects.In addition,a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG.Finally,experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG. 展开更多
关键词 research projects knowledge graph(KG) KG completion
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部