期刊文献+
共找到967篇文章
< 1 2 49 >
每页显示 20 50 100
A low redox potential and long life organic anode material for sodium-ion batteries
1
作者 Zhi Li Yang Wei +7 位作者 Kang Zhou Xin Huang Xing Zhou Jie Xu Taoyi Kong Junwei Lucas Bao Xiaoli Dong Yonggang Wang 《Journal of Energy Chemistry》 2025年第1期557-564,共8页
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ... Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs. 展开更多
关键词 Organic anode material Low redox potential Composite anode Sodium-ion batteries
在线阅读 下载PDF
Advanced Bismuth-Based Anode Materials for Efficient Potassium Storage:Structural Features,Storage Mechanisms and Modification Strategies
2
作者 Yiye Tan Fanglan Mo Hongyan Li 《Nano-Micro Letters》 2025年第6期1-39,共39页
Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the futur... Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified. 展开更多
关键词 Bismuth-based materials Potassium-ion batteries anode Potassium storage mechanism Modification strategies
在线阅读 下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:3
3
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 Low-temperature performance anode materials Microstructural regulations Surface modifications
在线阅读 下载PDF
A Review of Anode Materials for Dual‑Ion Batteries
4
作者 Hongzheng Wu Shenghao Luo +6 位作者 Hubing Wang Li Li Yaobing Fang Fan Zhang Xuenong Gao Zhengguo Zhang Wenhui Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期618-674,共57页
Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage... Distinct from"rockingchair"lithium-ion batteries(LIBs),the unique anionic intercalation chemistry on the cathode side of dual-ion batteries(DIBs)endows them with intrinsic advantages of low cost,high voltage,and ecofriendly,which is attracting widespread attention,and is expected to achieve the next generation of large-scale energy storage applications.Although the electrochemical reactions on the anode side of DIBs are similar to that of LIBs,in fact,to match the rapid insertion kinetics of anions on the cathode side and consider the compatibility with electrolyte system which also serves as an active material,the anode materials play a very important role,and there is an urgent demand for rational structural design and performance optimization.A review and summarization of previous studies will facilitate the exploration and optimization of DIBs in the future.Here,we summarize the development process and working mechanism of DIBs and exhaustively categorize the latest research of DIBs anode materials and their applications in different battery systems.Moreover,the structural design,reaction mechanism and electrochemical performance of anode materials are briefly discussed.Finally,the fundamental challenges,potential strategies and perspectives are also put forward.It is hoped that this review could shed some light for researchers to explore more superior anode materials and advanced systems to further promote the development of DIBs. 展开更多
关键词 Dual-ion batteries anode Carbonaceous materials Metallic materials Organic materials Optimization strategies
在线阅读 下载PDF
Effect of contact materials on the transient characteristics of vacuum arc plasma and anode erosion
5
作者 Ze YANG Dongsheng CAI +1 位作者 Qi HUANG Lijun WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期170-180,共11页
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co... In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results. 展开更多
关键词 vacuum arc MHD model anode erosion contact materials
在线阅读 下载PDF
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
6
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) anode material Sodium-ion battery Full cell
在线阅读 下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
7
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
在线阅读 下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:21
8
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
在线阅读 下载PDF
Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors 被引量:8
9
作者 Santanu Mukherjee Zhongkan Ren Gurpreet Singh 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期228-254,共27页
Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion... Intensive research effort is currently focused on the development of efficient, reliable, and environmentally safe electrochemical energy storage systems due to the ever-increasing global energy storage demand. Li ion battery systems have been used as the primary energy storage device over the last three decades. However, low abundance and uneven distribution of lithium and cobalt in the earth crust and the associated cost of these materials, have resulted in a concerted effort to develop beyond lithium electrochemical storage systems. In the case of non-Li ion rechargeable systems, the development of electrode materials is a significant challenge, considering the larger ionic size of the metal-ions and slower kinetics. Two-dimensional(2D) materials, such as graphene, transition metal dichalcogenides, MXenes and phosphorene, have garnered significant attention recently due to their multi-faceted advantageous properties: large surface areas, high electrical and thermal conductivity, mechanical strength, etc. Consequently, the study of 2D materials as negative electrodes is of notable importance as emerging non-Li battery systems continue to generate increasing attention. Among these interesting materials, graphene has already been extensively studied and reviewed, hence this report focuses on 2D materials beyond graphene for emerging non-Li systems. We provide a comparative analysis of 2D material chemistry, structure, and performance parameters as anode materials in rechargeable batteries and supercapacitors. 展开更多
关键词 Two-dimensional materials Transition metal dichalcogenides MXene EXFOLIATION TOP-DOWN anodes
在线阅读 下载PDF
Recent progress of advanced anode materials of lithium-ion batteries 被引量:22
10
作者 Hui Cheng Joseph G.Shapter +1 位作者 Yongying Li Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期451-468,I0011,共19页
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ... The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered. 展开更多
关键词 anode materials LIBS NANOmaterialS Metal organic frameworks
在线阅读 下载PDF
Impact of Morphology of Conductive Agent and Anode Material on Lithium Storage Properties 被引量:7
11
作者 Xiaobing Zhang Ji Ma Kezheng Chen 《Nano-Micro Letters》 SCIE EI CAS 2015年第4期360-367,共8页
In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with tw... In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with two kinds of conductive agents(i.e.,granular acetylene black and multi-walled carbon nanotube)as anodes in lithium-ion batteries(LIBs),respectively.It was found that the morphology of conductive agent is of utmost importance in determining LIBs storage properties.In contrast,not as the way we anticipated,the morphology of anode material merely plays a subordinate role in their electrochemical performances.Further,the morphology-matching principle of electrode materials was discussed so as to render their utilization more rational and effective in LIBs. 展开更多
关键词 Lithium-ion batteries MORPHOLOGY Conductive agent anode material
在线阅读 下载PDF
Template-Free Synthesis of Sb_2S_3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries 被引量:8
12
作者 Jianjun Xie Li Liu +5 位作者 Jing Xia Yue Zhang Min Li Yan Ouyang Su Nie Xianyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期105-116,共12页
Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated ... Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion. 展开更多
关键词 Sb2S3 Hollow microspheres anode material Lithium-ion batteries Sodium-storage property
在线阅读 下载PDF
A ternary phased SnO_2-Fe_2O_3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries 被引量:5
13
作者 Wangliang Wu Yi Zhao +2 位作者 Jiaxin Li Chuxin Wu Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期376-382,共7页
A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of ... A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1. 展开更多
关键词 SWCNTS SnO2 FE2O3 lithium ion batteries anode materials
在线阅读 下载PDF
CoFe_2O_4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries 被引量:5
14
作者 Yinglin Xiao Xiaomin Li +5 位作者 Jiantao Zai Kaixue Wang Yong Gong Bo Li Qianyan Han Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期307-315,共9页
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob... Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes. 展开更多
关键词 Cobalt ferrite GRAPHENE anode materials Lithium ion battery
在线阅读 下载PDF
Internal failure of anode materials for lithium batteriesd——A critical review 被引量:9
15
作者 Xiangqi Meng Yaolin Xu +5 位作者 Hongbin Cao Xiao Lin Pengge Ning Yi Zhang Yaiza Gonzalez Garcia Zhi Sun 《Green Energy & Environment》 CSCD 2020年第1期22-36,共15页
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna... Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries. 展开更多
关键词 Lithium battery anode materials Internal failure
在线阅读 下载PDF
Nano-crystalline FeOOH mixed with SWNT matrix as a superior anode material for lithium batteries 被引量:4
16
作者 Mingzhong Zou Weiwei Wen +3 位作者 Jiaxin Li Yingbin Lin Heng Lai Zhigao Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期513-518,共6页
Nano-crystalline FeOOH particles (5-10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes (SWNTs) for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly us... Nano-crystalline FeOOH particles (5-10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes (SWNTs) for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite (containing 15 wt% SWNTs) as anode material for lithium battery enhances kinetics of the Li+ insertion/extraction processes, thereby effectively improving re- versible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh.g-1 under a current density of 400 mA.g-1 even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix. 展开更多
关键词 FeOOH/SWNT composite electrochemical properties energy storage lithium batteries anode material
在线阅读 下载PDF
Nitrogen-Doped TiO_2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries 被引量:3
17
作者 Su Nie Li Liu +6 位作者 Junfang Liu Jianjun Xie Yue Zhang Jing Xia Hanxiao Yan Yiting Yuan Xianyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期255-267,共13页
Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N... Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries. 展开更多
关键词 Nanofibers anode materials Sodium-ion batteries PSEUDOCAPACITANCE NITROGEN-DOPING
在线阅读 下载PDF
Interconnected sandwich structure carbon/Si-SiO_2/carbon nanospheres composite as high performance anode material for lithium-ion batteries 被引量:3
18
作者 Yuanjin Du Mengyan Hou +3 位作者 Dan Zhou Yonggang Wang Congxiao Wang Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期315-323,共9页
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl... In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%. 展开更多
关键词 silicon CARBON anode materials lithium-ion batteries template method carbon thermal vapor deposition
在线阅读 下载PDF
Functional carbon materials for high-performance Zn metal anodes 被引量:7
19
作者 Caiwang Mao Yuxin Chang +7 位作者 Xuanting Zhao Xiaoyu Dong Yifei Geng Ning Zhang Lei Dai Xianwen Wu Ling Wang Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期135-153,I0005,共20页
The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-gr... The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined. 展开更多
关键词 Aqueous zinc-ion battery Carbon material Zn anodes SUBSTRATE Coating ADDITIVE
在线阅读 下载PDF
All boron-based 2D material as anode material in Li-ion batteries 被引量:3
20
作者 Ning Jiang Biao Li +1 位作者 Fanghua Ning Dingguo Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1651-1654,共4页
To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity haveattracted much attention. In this work, we adopt the first principles calculations to investigate the pos-sibilit... To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity haveattracted much attention. In this work, we adopt the first principles calculations to investigate the pos-sibility of a new two dimensional boron material, named Be, as anode material for Li-ion batteries. Thecalculated results show that the maximum theoretical specific capacity of Bc is 1653mAh g-1 (LiBl.s).Additionally, the energy barriers of Li ion and Li vacancy diffusion are 330 meV and 110 meV, respec-tively, which imply fast charge and discharge ability for B6 as an anode material. The theoretical findingsreported in this work suggest that BG is a potential candidate as anode material of high-energy-density Li-ion batteries. 展开更多
关键词 Ali boron-based 2D material anode materials Li-ion batteries First principles calculations
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部