Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici...Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.展开更多
The solid-solution reaction between an alkali cation and an active host material is known as a singlephase redox mechanism,and it is typically accompanied by a continuous voltage change.It is distinct from the typical...The solid-solution reaction between an alkali cation and an active host material is known as a singlephase redox mechanism,and it is typically accompanied by a continuous voltage change.It is distinct from the typical alkali cation intercalation reaction at an equivalent site of the active host material,which exhibits a voltage plateau.Herein,we report an unusual solid-solution potassium-ion intercalation mechanism with a low-voltage plateau capacity on multilayered turbostratic graphene nanosheets(T-GNSs).Despite the disordered graphitic structure with a broad range of d-spacings(3.65–4.18À),the T-GNSs showed a reversible plateau capacity of~200 m A h g^(-1),which is higher than that of a well-ordered graphite nanoplate(~120 m A h g^(-1)).In addition,a sloping capacity of~220 m A h g^(-1)was delivered with the plateau capacity,and higher rate capabilities,better reversibility,and a more stable cycling performance were confirmed on the turbostratic microstructure.First-principles calculations suggest that the multitudinous lattice domains of the T-GNSs contain diverse intercalation sites with strong binding energies,which could be the origin of the high-performance solid-solution potassium-ion intercalation behavior when the turbostratic graphene stacks have a d-spacing smaller than that of equilibrium potassium–graphite intercalation compounds(5.35À).展开更多
基金This work was supported by the National Science Foundation of China(51772152,51702129,51572114,51972150,21908110,and 51902161)Fundamental Research Funds for the Central Universities(30919011269,30919011110,and 1191030558)+3 种基金Y.W.thanks the Key University Science Research Project of Jiangsu province(16KJB430009)Y.Z.thanks for the support from the Postdoctoral Science Foundation(2018M630527)China Scholarship Council(201708320150)J.S.thanks the Natural Science Foundation of Jiangsu Province(BK20190479,1192261031693).
文摘Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1084836,and NRF-2021R1A4A2001403)supported by the KU-KIST School Program。
文摘The solid-solution reaction between an alkali cation and an active host material is known as a singlephase redox mechanism,and it is typically accompanied by a continuous voltage change.It is distinct from the typical alkali cation intercalation reaction at an equivalent site of the active host material,which exhibits a voltage plateau.Herein,we report an unusual solid-solution potassium-ion intercalation mechanism with a low-voltage plateau capacity on multilayered turbostratic graphene nanosheets(T-GNSs).Despite the disordered graphitic structure with a broad range of d-spacings(3.65–4.18À),the T-GNSs showed a reversible plateau capacity of~200 m A h g^(-1),which is higher than that of a well-ordered graphite nanoplate(~120 m A h g^(-1)).In addition,a sloping capacity of~220 m A h g^(-1)was delivered with the plateau capacity,and higher rate capabilities,better reversibility,and a more stable cycling performance were confirmed on the turbostratic microstructure.First-principles calculations suggest that the multitudinous lattice domains of the T-GNSs contain diverse intercalation sites with strong binding energies,which could be the origin of the high-performance solid-solution potassium-ion intercalation behavior when the turbostratic graphene stacks have a d-spacing smaller than that of equilibrium potassium–graphite intercalation compounds(5.35À).