Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/N...Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.展开更多
本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散...本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散射的计算,使得GRECO方法可以快速计算具有凹腔结构目标的电磁散射.本方法对于目标识别和逆合成孔径成像等方面的研究具有重要的应用价值.展开更多
基金supported by the National Natural Science Foundation of China (No.11172134)the Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX13_132)
文摘Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.
文摘本文利用现代图形加速卡中GPU(Graphics Process Unit)的可编程管线,实现了图形电磁计算(GRECO)方法.与原有的方法相比,在利用物理光学和物理绕射理论的基础上,计算速度提高了20倍左右.并且利用GPU实现了射线追踪算法,用于目标上多次散射的计算,使得GRECO方法可以快速计算具有凹腔结构目标的电磁散射.本方法对于目标识别和逆合成孔径成像等方面的研究具有重要的应用价值.