A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co...Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.展开更多
以湿法制备的硫溶胶和氧化石墨烯为前驱体,采用水热法还原不同酸碱体系的氧化石墨烯,制备石墨烯-硫复合材料。通过XRD和场发射扫描电子显微镜(FESEM)等对产物进行分析。石墨烯以薄膜状包覆在硫颗粒表面。恒流充放电、交流阻抗和循环...以湿法制备的硫溶胶和氧化石墨烯为前驱体,采用水热法还原不同酸碱体系的氧化石墨烯,制备石墨烯-硫复合材料。通过XRD和场发射扫描电子显微镜(FESEM)等对产物进行分析。石墨烯以薄膜状包覆在硫颗粒表面。恒流充放电、交流阻抗和循环伏安测试结果表明:180℃、酸性条件下水热12 h制备的复合材料电化学性能较好,以0.2 m A/cm2的电流密度在1.5-3.0 V充放电,首次放电比容量为803.72 m Ah/g,循环20次衰减至592.40 m Ah/g,容量保持率为73.71%。展开更多
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
基金Project(21502014)supported by the National Natural Science Foundation of ChinaProjects(20180550736,2019-ZD 0117)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Projects(JDL 2019004,JDL 2017027)supported by the Research Foundation of Educational Committee of Liaoning Province,ChinaProject(191008-K)supported by Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China。
文摘Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.
文摘以湿法制备的硫溶胶和氧化石墨烯为前驱体,采用水热法还原不同酸碱体系的氧化石墨烯,制备石墨烯-硫复合材料。通过XRD和场发射扫描电子显微镜(FESEM)等对产物进行分析。石墨烯以薄膜状包覆在硫颗粒表面。恒流充放电、交流阻抗和循环伏安测试结果表明:180℃、酸性条件下水热12 h制备的复合材料电化学性能较好,以0.2 m A/cm2的电流密度在1.5-3.0 V充放电,首次放电比容量为803.72 m Ah/g,循环20次衰减至592.40 m Ah/g,容量保持率为73.71%。