Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as a...Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.展开更多
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect tran...Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.展开更多
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point...In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant No.61574166)the National Basic Research Program of China(Grant No.2013CBA01604)+1 种基金the National Key Research and Development Program of China(Grant No.2016YFA0201802)and the Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)
文摘Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modem IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 61306006
文摘Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306006)
文摘In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.