The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroid...Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving...The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving an outstanding synergy of enhanced strength and exceptional ductility.The plastic deformation behavior,strain hardening behavior,and fracture behavior of LPBF 316L steel annealing at 1200℃for 20 h were studied through quasi-in-situ tensile process.It was found that LPBF 316L steel formed a certain proportion of deformation twins during the tensile process,and the formation of twins changed the crystal orientation,thus promoting further slip and crystal deformation.The synergistic effect of slip and twin promoted higher plasticity.LPBF process coupled with controlled annealing at 1200°C for 20 h leads to a ultimate tensile strength of 613 MPa and total elongation of 73.8%.展开更多
The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this s...The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.展开更多
This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing...This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this iss...Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.展开更多
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti...There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr...The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost.展开更多
The genomic fusions of the anaplastic lymphoma kinase(ALK)gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma(NSCLC).The Second Xiangya Hospital of Central South Univers...The genomic fusions of the anaplastic lymphoma kinase(ALK)gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma(NSCLC).The Second Xiangya Hospital of Central South University has treated 2 NSCLC patients with 2 distinct novel ALK gene fusions.Case 1 was a 55-year-old male with a solid nodule located in the right hilar lobe on enhanced CT scan.Case 2 was a 47-year-old female with enhanced CT showing involvement of the left upper lobe of lung.Histopathological examination of tumor tissues confirmed lung adenocarcinoma in both cases.Immunohistochemical(IHC)staining demonstrated positivity for thyroid transcription factor 1(TTF-1)and ALK-D5F3 in tumor cells,while negativity for P40.The next-generation sequencing(NGS)tests identified a PNPT1-ALK(Exon22:Exon20)fusion variant in case 1 and a TCEAL2-ALK(Exon3:Exon19)fusion variant in case 2.The TCEAL2-ALK fusion was further confirmed by amplification refractory mutation system(ARMS)-PCR at the mRNA level.Both patients were treated with oral alectinib at a dosage of 600 mg twice daily.The tumors in both patients were significantly decreased after alectinib treatment,achieving partial response.At the time of submission,there was an absence of disease progression and the progression-free survival(PFS)had surpassed 1 year.It offered compelling evidences that the individuals with NSCLC and harboring either a PNPT1-ALK(Exon22:Exon20)fusion or a TCEAL2-ALK(Exon3:Exon19)fusion,experience favorable therapeutic outcomes through the administration of alectinib.This study expands the known ALK fusion variants database and supports the precision treatment of NSCLC using ALK tyrosine kinase inhibitors(TKIs).展开更多
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon...Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.展开更多
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th...In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.展开更多
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金Project(2022YFC2406000)supported by the National Key R&D Program,ChinaProject(2022GDASZH-2022010107)supported by the Guangdong Academy of Science,China+4 种基金Project(2019BT02C629)supported by the Guangdong Special Support Program,ChinaProject(2022GDASZH-2022010203-003)supported by the GDAS’project of Science and Technology Development,ChinaProjects(2023B1212120008,2023B1212060045)supported by the Guangdong Province Science and Technology Plan Projects,ChinaProject(2023TQ07Z559)supported by the Special Support Foundation of Guangdong Province,ChinaProject(52105293)supported by the National Natural Science Foundation of China。
文摘Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金Project(52474418)supported by the National Natural Science Foundation of ChinaProject(YDZJSX2022A012)supported by the Central Guiding Local Science and Technology Development Foundation,China。
文摘The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving an outstanding synergy of enhanced strength and exceptional ductility.The plastic deformation behavior,strain hardening behavior,and fracture behavior of LPBF 316L steel annealing at 1200℃for 20 h were studied through quasi-in-situ tensile process.It was found that LPBF 316L steel formed a certain proportion of deformation twins during the tensile process,and the formation of twins changed the crystal orientation,thus promoting further slip and crystal deformation.The synergistic effect of slip and twin promoted higher plasticity.LPBF process coupled with controlled annealing at 1200°C for 20 h leads to a ultimate tensile strength of 613 MPa and total elongation of 73.8%.
基金the National Natural Science Foundation of China(Grant No.42271436)the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2021MD030,ZR2021QD148).
文摘The existing indoor fusion positioning methods based on Pedestrian Dead Reckoning(PDR)and geomagnetic technology have the problems of large initial position error,low sensor accuracy,and geomagnetic mismatch.In this study,a novel indoor fusion positioning approach based on the improved particle filter algorithm by geomagnetic iterative matching is proposed,where Wi-Fi,PDR,and geomagnetic signals are integrated to improve indoor positioning performances.One important contribution is that geomagnetic iterative matching is firstly proposed based on the particle filter algorithm.During the positioning process,an iterative window and a constraint window are introduced to limit the particle generation range and the geomagnetic matching range respectively.The position is corrected several times based on geomagnetic iterative matching in the location correction stage when the pedestrian movement is detected,which made up for the shortage of only one time of geomagnetic correction in the existing particle filter algorithm.In addition,this study also proposes a real-time step detection algorithm based on multi-threshold constraints to judge whether pedestrians are moving,which satisfies the real-time requirement of our fusion positioning approach.Through experimental verification,the average positioning accuracy of the proposed approach reaches 1.59 m,which improves 33.2%compared with the existing particle filter fusion positioning algorithms.
基金Project(2022A1515010304)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(52305358)supported by the National Natural Science Foundation of China+2 种基金Project(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(QT-2023-001)supported by the Young Talent Support Project of Guangzhou,ChinaProject(2023ZYGXZR061)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金supported by the National Natural Science Foundation of China(61903305,62073267)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘Dempster-Shafer evidence theory is broadly employed in the research of multi-source information fusion.Nevertheless,when fusing highly conflicting evidence it may pro-duce counterintuitive outcomes.To address this issue,a fusion approach based on a newly defined belief exponential diver-gence and Deng entropy is proposed.First,a belief exponential divergence is proposed as the conflict measurement between evidences.Then,the credibility of each evidence is calculated.Afterwards,the Deng entropy is used to calculate information volume to determine the uncertainty of evidence.Then,the weight of evidence is calculated by integrating the credibility and uncertainty of each evidence.Ultimately,initial evidences are amended and fused using Dempster’s rule of combination.The effectiveness of this approach in addressing the fusion of three typical conflict paradoxes is demonstrated by arithmetic exam-ples.Additionally,the proposed approach is applied to aerial tar-get recognition and iris dataset-based classification to validate its efficacy.Results indicate that the proposed approach can enhance the accuracy of target recognition and effectively address the issue of fusing conflicting evidences.
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
基金supported by the Municipal Gavemment of Quzhou(2022D0009,2022D013,2022D033)the Science and Technology Project of Sichuan Province(2023YFG0176)。
文摘There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金supported by the National Natural Science Foundation of China(62072255)。
文摘The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost.
基金supported by the National Natural Science Foundation(81900070)the Natural Science Foundation of Hunan Province(2020JJ5813)China。
文摘The genomic fusions of the anaplastic lymphoma kinase(ALK)gene have been widely recognized as effective therapeutic targets for non-small cell lung carcinoma(NSCLC).The Second Xiangya Hospital of Central South University has treated 2 NSCLC patients with 2 distinct novel ALK gene fusions.Case 1 was a 55-year-old male with a solid nodule located in the right hilar lobe on enhanced CT scan.Case 2 was a 47-year-old female with enhanced CT showing involvement of the left upper lobe of lung.Histopathological examination of tumor tissues confirmed lung adenocarcinoma in both cases.Immunohistochemical(IHC)staining demonstrated positivity for thyroid transcription factor 1(TTF-1)and ALK-D5F3 in tumor cells,while negativity for P40.The next-generation sequencing(NGS)tests identified a PNPT1-ALK(Exon22:Exon20)fusion variant in case 1 and a TCEAL2-ALK(Exon3:Exon19)fusion variant in case 2.The TCEAL2-ALK fusion was further confirmed by amplification refractory mutation system(ARMS)-PCR at the mRNA level.Both patients were treated with oral alectinib at a dosage of 600 mg twice daily.The tumors in both patients were significantly decreased after alectinib treatment,achieving partial response.At the time of submission,there was an absence of disease progression and the progression-free survival(PFS)had surpassed 1 year.It offered compelling evidences that the individuals with NSCLC and harboring either a PNPT1-ALK(Exon22:Exon20)fusion or a TCEAL2-ALK(Exon3:Exon19)fusion,experience favorable therapeutic outcomes through the administration of alectinib.This study expands the known ALK fusion variants database and supports the precision treatment of NSCLC using ALK tyrosine kinase inhibitors(TKIs).
基金supported by the National Natural Science Foundation of China(62073330)。
文摘Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather.
基金supported by the National Natural Science Foundation of China(62073036,62076031)Beijing Natural Science Foundation(4242049).
文摘In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.