期刊文献+
共找到2,088篇文章
< 1 2 105 >
每页显示 20 50 100
Anomaly Detection Method Using Feature Reconstruction Based Knowledge Distillation
1
作者 ZHU Xin-yu SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期115-124,236,共11页
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationshi... In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection. 展开更多
关键词 Feature Reconstruction anomaly detection Distillation Mechanism Industrial Production
在线阅读 下载PDF
A background refinement method based on local density for hyperspectral anomaly detection 被引量:5
2
作者 ZHAO Chun-hui WANG Xin-peng +1 位作者 YAO Xi-feng TIAN Ming-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期84-94,共11页
For anomaly detection,anomalies existing in the background will affect the detection performance.Accordingly,a background refinement method based on the local density is proposed to remove the anomalies from thebackgr... For anomaly detection,anomalies existing in the background will affect the detection performance.Accordingly,a background refinement method based on the local density is proposed to remove the anomalies from thebackground.In this work,the local density is measured by its spectral neighbors through a certain radius which is obtained by calculating the mean median of the distance matrix.Further,a two-step segmentation strategy is designed.The first segmentation step divides the original background into two subsets,a large subset composed by background pixels and a small subset containing both background pixels and anomalies.The second segmentation step employing Otsu method with an aim to obtain a discrimination threshold is conducted on the small subset.Then the pixels whose local densities are lower than the threshold are removed.Finally,to validate the effectiveness of the proposed method,it combines Reed-Xiaoli detector and collaborative-representation-based detector to detect anomalies.Experiments are conducted on two real hyperspectral datasets.Results show that the proposed method achieves better detection performance. 展开更多
关键词 hyperspectral imagery anomaly detection background refinement the local density
在线阅读 下载PDF
Range anomaly suppression based on neighborhood pixels detection in ladar range images 被引量:2
3
作者 Mingbo Zhao Jun He +1 位作者 Zaiqi Lu Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期68-75,共8页
Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear ... Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms. 展开更多
关键词 image processing range anomaly suppression neigh-borhood p xe s detection linear target laser radar (ladar).
在线阅读 下载PDF
An anomaly detection method for spacecraft solar arrays based on the ILS-SVM model 被引量:3
4
作者 WANG Yu ZHANG Tao +1 位作者 HUI Jianjiang LIU Yajie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期515-529,共15页
Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is ex... Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method. 展开更多
关键词 spacecraft solar array anomaly detection integrated least squares support vector machine(ILS-SVM) induced ordered weighted average(IOWA)operator integrated model
在线阅读 下载PDF
MNDetector:基于多层网络的异常访问检测方法
5
作者 袁子淇 孙庆赟 +2 位作者 周号益 朱祖坤 李建欣 《计算机研究与发展》 北大核心 2025年第3期765-778,共14页
针对频发的网络安全事件,异常访问检测被广泛应用于恶意行为的识别.然而,异常访问通常仅在部分属性字段上体现出显著的异常特性,检测结果易被异常特性不显著的字段所干扰.针对这一问题,提出MNDetector,将多层网络结构引入异常访问检测领... 针对频发的网络安全事件,异常访问检测被广泛应用于恶意行为的识别.然而,异常访问通常仅在部分属性字段上体现出显著的异常特性,检测结果易被异常特性不显著的字段所干扰.针对这一问题,提出MNDetector,将多层网络结构引入异常访问检测领域,基于关联紧密的属性字段构建单层网络,并添加层间关联以形成多层网络.随后利用适应多层网络的跨层游走获得同层及跨层节点序列以计算节点表示.最终利用分层生成对抗网络(GAN)融合各层重构损失与判别结果,实现异常检测.实验结果表明,MNDetector在多个公开数据集上的检测效果超过了最优方法,相较于常用方法实现了约8%的F1分数提升.进一步的案例研究通过分析异常特性在属性字段上的分布解释了不同场景的检测效果差异,并从网络结构的角度解释了各层检测结果差异,验证了MNDetector能够解决异常特性不显著的属性字段造成的属性干扰问题. 展开更多
关键词 异常检测 多层网络 访问检测 网络行为 网络安全
在线阅读 下载PDF
基于Anomaly Transformer的轨道几何不平顺异常检测方法
6
作者 杨森 刘金朝 +1 位作者 刘钰 杨飞 《铁道学报》 北大核心 2025年第6期122-131,共10页
使用传统信号处理方法在轨道几何不平顺异常数据检测中受限于先验定义的异常特征,导致其无法有效捕捉复杂数据中一些微小变化和未知模式,限制其应对多变和复杂情况的能力。提出基于注意力机制Anomaly Transformer的无监督深度神经网络... 使用传统信号处理方法在轨道几何不平顺异常数据检测中受限于先验定义的异常特征,导致其无法有效捕捉复杂数据中一些微小变化和未知模式,限制其应对多变和复杂情况的能力。提出基于注意力机制Anomaly Transformer的无监督深度神经网络的轨道几何不平顺数据异常检测模型,采用双分支注意力机制同时对先验关联和序列关联进行建模,实现在无需先验信息和专家知识条件下,轨道几何异常检测数据特征的自动识别。研究结果表明:此模型可实现轨道不平顺异常数据中局部毛刺异常、道岔轨距加宽异常、单边轨距波形拉直线异常、检测数据分布异常的精准识别,识别准确率达到95.53%、召回率98.72%、F1分数97.10%;同时验证了在不同速度等级线路、不同检测车的泛化性能,识别准确率不低于90.0%,召回率不低于91%,说明模型具有良好的鲁棒性和泛化性能。 展开更多
关键词 轨道不平顺 轨道几何 异常检测 TRANSFORMER 无监督学习
在线阅读 下载PDF
AnomalyDetect:一种基于欧式距离的在线异常检测算法 被引量:13
7
作者 霍文君 王伟 李文 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第7期555-563,571,共10页
异常检测是数据挖掘中的一项关键技术,在计算机和互联网领域有广泛的应用,包括网络安全、图像识别、智能运维等,特别是智能运维,近几年取得了长足的发展.已有的异常检测算法会有低准确度、离线、无法自动更新等问题.为此对智能运维背景... 异常检测是数据挖掘中的一项关键技术,在计算机和互联网领域有广泛的应用,包括网络安全、图像识别、智能运维等,特别是智能运维,近几年取得了长足的发展.已有的异常检测算法会有低准确度、离线、无法自动更新等问题.为此对智能运维背景下的真实异常检测问题进行研究,构建高准确度、在线、通用异常检测算法,并据此在已有时间序列异常检测算法的基础上,提出了一种新的基于欧式距离的在线异常检测算法.通过实际的运维时序数据实验,发现该算法可以实时快速准确地检测流式时间序列数据中的异常数据,验证了该算法的有效性. 展开更多
关键词 异常检测 时间序列 在线算法 欧式距离 智能运维
在线阅读 下载PDF
Intrusion detection based on system calls and homogeneous Markov chains 被引量:8
8
作者 Tian Xinguang Duan Miyi +1 位作者 Sun Chunlai Li Wenfa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期598-605,共8页
A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain ... A novel method for detecting anomalous program behavior is presented, which is applicable to hostbased intrusion detection systems that monitor system call activities. The method constructs a homogeneous Markov chain model to characterize the normal behavior of a privileged program, and associates the states of the Markov chain with the unique system calls in the training data. At the detection stage, the probabilities that the Markov chain model supports the system call sequences generated by the program are computed. A low probability indicates an anomalous sequence that may result from intrusive activities. Then a decision rule based on the number of anomalous sequences in a locality frame is adopted to classify the program's behavior. The method gives attention to both computational efficiency and detection accuracy, and is especially suitable for on-line detection. It has been applied to practical host-based intrusion detection systems. 展开更多
关键词 intrusion detection Markov chain anomaly detection system call.
在线阅读 下载PDF
Calculation and application of full-wave airborne transient electromagnetic data in electromagnetic detection 被引量:3
9
作者 JI Yan-ju ZHU Yu +2 位作者 YU Ming-mei LI Dong-sheng GUAN Shan-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期1011-1020,共10页
Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration o... Airborne electromagnetic transient method enjoys the advantages of high-efficiency and the high resolution of electromagnetic anomalies,especially suitable for mining detection around goaf areas and deep exploration of minerals.In this paper,we calculated the full-wave airborne transient electromagnetic data,according to the result of numerical research,the advantage of switch-off time response in electromagnetic detection was proofed via experiments.Firstly,based on the full-wave airborne transient electromagnetic system developed by Jilin University(JLU-ATEMI),we proposed a method to compute the full-waveform electromagnetic(EM)data of 3D model using the FDTD approach and convolution algorithm,and verify the calculation by the response of homogenous half-space.Then,through comparison of switch-off-time response and off-time response,we studied the effect of ramp time on anomaly detection.Finally,we arranged two experimental electromagnetic detection,the results indicated that the switch-off-time response can reveal the shallow target more effectively,and the full-waveform airborne electromagnetic system is an effective technique for shallow target detection. 展开更多
关键词 airborne electromagnetic transient method full-waveform FDTD approach convolution algorithm anomaly detection
在线阅读 下载PDF
Approach based on wavelet analysis for detecting and amending anomalies in dataset 被引量:1
10
作者 彭小奇 宋彦坡 +1 位作者 唐英 张建智 《Journal of Central South University of Technology》 EI 2006年第5期491-495,共5页
It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting ... It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality. 展开更多
关键词 data preprocessing wavelet analysis anomaly detecting data mining
在线阅读 下载PDF
Deep learning-based method for detecting anomalies in electromagnetic environment situation
11
作者 Wei-lin Hu Lun-wen Wang +2 位作者 Chuang Peng Ran-gang Zhu Meng-bo Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期231-241,共11页
The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep le... The anomaly detection of electromagnetic environment situation(EMES) has essential reference value for electromagnetic equipment behavior cognition and battlefield threat assessment.In this paper,we proposed a deep learning-based method for detecting anomalies in EMES to address the problem of relatively low efficiency of electromagnetic environment situation anomaly detection(EMES-AD).Firstly,the convolutional kernel extracts the static features of different regions of the EMES.Secondly,the dynamic features of the region are obtained by using a recurrent neural network(LSTM).Thirdly,the Spatio-temporal features of the region are recovered by using a de-convolutional network and then fused to predict the EMES.The structural similarity algorithm(SSIM) is used to determine whether it is anomalous.We developed the detection framework,de-signed the network parameters,simulated the data sets containing different anomalous types of EMES,and carried out the detection experiments.The experimental results show that the proposed method is effective. 展开更多
关键词 Electromagnetic environment situation(EMES) anomaly detection(AD) Regional features integration LSTM CNN
在线阅读 下载PDF
基于核主成分分析的半监督日志异常检测模型 被引量:2
12
作者 顾兆军 叶经纬 +2 位作者 刘春波 张智凯 王志 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期64-72,97,共10页
对于具有“组异常”和“局部异常”分布特点的系统日志数据,传统的ADOA(anomaly detection with partially observed anomalies)半监督日志异常检测方法存在为无标签数据生成的伪标签准确性不佳的问题.针对此问题,提出一种改进的半监督... 对于具有“组异常”和“局部异常”分布特点的系统日志数据,传统的ADOA(anomaly detection with partially observed anomalies)半监督日志异常检测方法存在为无标签数据生成的伪标签准确性不佳的问题.针对此问题,提出一种改进的半监督日志异常检测模型.对已知异常样本采用k均值聚类,采用核主成分分析计算无标签样本的重构误差;运用重构误差和异常样本相似分计算出样本的综合异常分,作为其伪标签;依据伪标签计算LightGBM分类器的样本权重,训练异常检测模型.通过参数试验探究了训练集样本比例变化对模型性能的影响.在HDFS和BGL这2个公开数据集上进行试验,结果表明该模型能够提高伪标签的准确性,相较于DeepLog、LogAnomaly、LogCluster、PCA和PLELog等已有模型,精确率和F 1分数均有提升.与传统的ADOA异常检测方法相比,该模型F 1分数在2类数据集上分别提高了0.084和0.085. 展开更多
关键词 系统日志 日志异常检测 组异常 局部异常 半监督 重构误差 核主成分分析 伪标签
在线阅读 下载PDF
基于深度学习的网络入侵检测系统综述 被引量:2
13
作者 邓淼磊 阚雨培 +3 位作者 孙川川 徐海航 樊少珺 周鑫 《计算机应用》 北大核心 2025年第2期453-466,共14页
入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新... 入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。 展开更多
关键词 网络安全 入侵检测 深度学习 异常检测 网络入侵检测系统
在线阅读 下载PDF
面向类不平衡和重叠的工控数据异常检测的半监督欠采样方法 被引量:1
14
作者 顾兆军 扬雪影 +1 位作者 隋翯 张一诺 《计算机应用研究》 北大核心 2025年第1期156-164,共9页
工业控制系统异常检测面临着数据缺乏标签信息、类不平衡和类重叠的耦合问题,导致现有的分类器难以精准检测异常数据。现有的数据级采样方法在打伪标签、数据平衡或检测重叠区域时存在着打伪标签结果不准确、采样效果稳定性差以及重叠... 工业控制系统异常检测面临着数据缺乏标签信息、类不平衡和类重叠的耦合问题,导致现有的分类器难以精准检测异常数据。现有的数据级采样方法在打伪标签、数据平衡或检测重叠区域时存在着打伪标签结果不准确、采样效果稳定性差以及重叠识别率低等问题。为此,提出一种基于半监督学习的欠采样方法(SSLU-LP)。该方法通过异构集成将标签传播机制和单类分类器结合,补充数据伪标签;利用最小生成树策略构建重叠区域检测模型;采用欠采样策略,通过最近邻搜索有选择性地去除部分多数类样本。最后该方法与四种经典分类器结合,在九个工控数据集上与九种混合算法进行比较。实验结果表明,所提方法可以精准地为无标签数据打伪标签,高效且有效检测出不平衡数据集中的重叠数据,改善了分类器的训练效果,提高了分类器的异常检测性能。 展开更多
关键词 工业控制系统 类不平衡 类重叠 半监督学习 异常检测
在线阅读 下载PDF
利用多层次特征融合网络的图像异常检测算法
15
作者 唐俊 左金梅 +2 位作者 王科 张艳 王年 《国防科技大学学报》 北大核心 2025年第2期173-182,共10页
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异... 图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。 展开更多
关键词 图像异常检测 伪异常 多层次特征融合 一致性约束
在线阅读 下载PDF
基于三重生成对抗的多维时间序列异常检测 被引量:1
16
作者 霍纬纲 吴艺凝 《计算机工程与设计》 北大核心 2025年第5期1304-1310,共7页
为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为... 为有效解决多维时间序列(multivariate time series, MTS)无监督异常检测模型中自编码器模块容易拟合异常样本、正常MTS样本对应的隐空间特征可能被重构为异常MTS的问题,设计一种具有三重生成对抗的MTS异常检测模型。以LSTM自编码器为生成器,基于重构误差生成伪标签,由判别器区分经伪标签过滤后的重构MTS和原始MTS;采用两次对抗训练将LSTM自编码器的隐空间约束为均匀分布,减少LSTM自编码器隐空间特征重构出异常MTS的可能性。多个公开MTS数据集上的实验结果表明,T-GAN能在带有污染数据的训练集上更好学习正常MTS分布,取得较高的异常检测效果。 展开更多
关键词 异常检测 生成对抗 多维时间序列 自编码器 长短期记忆网络 伪标签 污染数据
在线阅读 下载PDF
基于XGBoost和随机森林的区块链异常交易检测
17
作者 赵鹏 王文剑 +1 位作者 吴迪 张虹 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期115-122,共8页
近年来,黑客攻击、网络钓鱼、勒索病毒等事件频发,使得区块链交易异常检测成为当前研究的热点之一。XGBoost作为一种基于梯度提升框架的机器学习算法,可灵活地处理数据特征,不仅关注模型的预测误差,还考虑了每个样本的相对重要性。在前... 近年来,黑客攻击、网络钓鱼、勒索病毒等事件频发,使得区块链交易异常检测成为当前研究的热点之一。XGBoost作为一种基于梯度提升框架的机器学习算法,可灵活地处理数据特征,不仅关注模型的预测误差,还考虑了每个样本的相对重要性。在前人区块链交易异常检测研究的基础上,将XGBoost与随机森林算法相结合,提出了基于XGBoost和随机森林的区块链异常交易检测模型(Blockchain Anomalous Transaction Detection Based on XGBoost and Random Forests,BATD_XRF)。模型分为数据特征处理、特征选择、分类检测3个模块,选取Elliptic Data Set、Bitcoin Alpha Dataset和Bitcoin OTC Trust Network Dataset数据集,使用主成分分析方法对数据进行二分类。特征选择过程中通过Gini Mean Decrease计算平均递减量,进一步确定特征的相对重要性。分类检测过程中提出网络搜索参数调优算法,并进行10倍交叉验证。最终通过与其他模型的对比实验,证明了所提模型在区块链交易异常检测中的准确性更高,训练时间更短。 展开更多
关键词 区块链异常交易检测 XGBoost 随机森林 比特币交易
在线阅读 下载PDF
基于集成学习的业务流程异常检测与定位方法
18
作者 赵海燕 付建平 +2 位作者 关威 曹健 陈庆奎 《计算机集成制造系统》 北大核心 2025年第5期1651-1662,共12页
在业务流程执行中,可能会出现各种异常情况,从而给企业组织带来风险,导致巨大的损失。为了检测事件日志中的异常轨迹,并定位轨迹中的异常活动,提出一种结合启发式挖掘算法和自编码器模型的集成学习框架。首先,使用启发式挖掘算法来挖掘... 在业务流程执行中,可能会出现各种异常情况,从而给企业组织带来风险,导致巨大的损失。为了检测事件日志中的异常轨迹,并定位轨迹中的异常活动,提出一种结合启发式挖掘算法和自编码器模型的集成学习框架。首先,使用启发式挖掘算法来挖掘流程模型并提取主干。基于主干对事件日志进行重叠采样,并针对每个子事件日志训练自编码器模型。若某个轨迹无法匹配任何一条主干,或者被所有自编码器模型检测为异常,则该轨迹将被检测为异常。此外,通过对异常轨迹与其匹配的主干进行分析,可以确定引起异常的具体活动,并进一步采取相应的措施进行修复或优化。实验证明,该方法能够高效地检测业务流程中的异常,并能有效地定位轨迹中的异常活动。 展开更多
关键词 业务流程 异常检测 集成学习 流程挖掘 事件日志 自编码器
在线阅读 下载PDF
基于LSTM-GBSVDD模型的飞行轨迹异常检测方法
19
作者 李琳 曾雅琴 +2 位作者 朱惠民 孙世岩 梁伟阁 《兵工学报》 北大核心 2025年第5期83-93,共11页
为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD... 为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm, GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。 展开更多
关键词 飞行轨迹 长短时记忆 支持向量数据描述 异常检测
在线阅读 下载PDF
融合稀疏图注意力的多元时间序列异常检测方法 被引量:1
20
作者 衡红军 代栋炜 《计算机工程与设计》 北大核心 2025年第3期841-849,共9页
为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neur... 为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neural networks,CNN)提取时间戳上下文信息并使用全局时间戳编码和Transformer位置编码增强序列之间的联系。利用稀疏自注意力关注重要的时间戳与特征,通过自注意力蒸馏(self-attention distillation)降低输入规模,使重要的特征更加突出,以学习时间和特征两个维度的复杂依赖关系,提升表示学习质量。通过构建基于预测和重构的综合损失函数,对模型参数进行优化。将综合损失误差作为异常得分实现异常判定。实验结果表明,PSGAT-AD模型在4个公开数据集上的F1得分提升1.47%~6.52%。 展开更多
关键词 异常检测 多元时间序列 图注意力网络 时间戳编码 稀疏自注意力 自注意力蒸馏 综合损失误差
在线阅读 下载PDF
上一页 1 2 105 下一页 到第
使用帮助 返回顶部