期刊文献+
共找到4,961篇文章
< 1 2 249 >
每页显示 20 50 100
Application of extension neural network to safety status pattern recognition of coalmines 被引量:6
1
作者 周玉 W.Pedrycz 钱旭 《Journal of Central South University》 SCIE EI CAS 2011年第3期633-641,共9页
In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of... In order to accurately and quickly identify the safety status pattern of coalmines,a new safety status pattern recognition method based on the extension neural network (ENN) was proposed,and the design of structure of network,the rationale of recognition algorithm and the performance of proposed method were discussed in detail.The safety status pattern recognition problem of coalmines can be regard as a classification problem whose features are defined in a range,so using the ENN is most appropriate for this problem.The ENN-based recognition method can use a novel extension distance to measure the similarity between the object to be recognized and the class centers.To demonstrate the effectiveness of the proposed method,a real-world application on the geological safety status pattern recognition of coalmines was tested.Comparative experiments with existing method and other traditional ANN-based methods were conducted.The experimental results show that the proposed ENN-based recognition method can identify the safety status pattern of coalmines accurately with shorter learning time and simpler structure.The experimental results also confirm that the proposed method has a better performance in recognition accuracy,generalization ability and fault-tolerant ability,which are very useful in recognizing the safety status pattern in the process of coal production. 展开更多
关键词 safety status pattern recognition extension neural network coal mines
在线阅读 下载PDF
Fuzzy Jamming Pattern Recognition Based on Statistic Parameters of Signal’s PSD 被引量:2
2
作者 牛英滔 姚富强 陈建忠 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第1期15-23,共9页
In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shap... In order to recognize the jamming pattern in anti-jamming, a novel fuzzy jamming recognition method based on statistic parameters of received signal’s power spectral density (PSD) is proposed. It exploits PSD’s shape factor and skewness of received signal as classified characters of jamming pattern. After the mean center and variance of each jamming pattern are calculated by using some jamming samples, an exponential fuzzy membership function is used to calculate the membership value of the recognized sample. Finally, the jamming pattern of received signal is recognized by the maximum membership principle. The simulation results show that the proposed algorithm can recognize common eight jamming patterns accurately. 展开更多
关键词 communication technology shape factor SKEWNESS jamming pattern fuzzy recognition
在线阅读 下载PDF
Visualization of flatness pattern recognition based on T-S cloud inference network 被引量:2
3
作者 张秀玲 赵亮 +1 位作者 臧佳音 樊红敏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期560-566,共7页
Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a nov... Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively. 展开更多
关键词 pattern recognition T-S cloud inference network cloud model mixed programming virtual reality visual recognition
在线阅读 下载PDF
Pattern recognitionbased method for radar antideceptive jamming 被引量:1
4
作者 Ma Xiaoyan Qin Jiangmin Li Jianxun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期802-805,共4页
In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extractin... In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extracting algorithms, i.e. the statistical algorithm and the neural network (NN) algorithm are presented, then uses the RBF NN as the classitier in the processing model. Finally the two algorithms are validated and compared through some simulations. 展开更多
关键词 angle deceptive jamming ANTI-JAMMING pattern recognition feature extraction neural network.
在线阅读 下载PDF
Pattern recognition of quantum information based on patterndistance
5
作者 Dong Daoyi Chen Zonghai Jiang Shengxiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期917-923,共7页
Looking upon every encoding state of quantum information systems as a quantum information pattern, A kind of pattern-distance between different patterns as a measurement of comparability of quantum information pattern... Looking upon every encoding state of quantum information systems as a quantum information pattern, A kind of pattern-distance between different patterns as a measurement of comparability of quantum information patterns is defined, and two kinds of recognition algorithms based on pattern-distance for quantum information are proposed. They can respectively recognize quantum information with known objective pattern and unknown objective pattern. In the two algorithms, the phases and occurrence probabilities of different eigenpattems of quantum information are sufficiently considered. Two examples demonstrate the feasibility and effectiveness of the two recognition methods. These algorithms point out a new and important path for applications of quantum information and pattern recognition. 展开更多
关键词 quantum information quantum information pattern pattern-distance recognition.
在线阅读 下载PDF
Air Target Fuzzy Pattern Recognition Threat-Judgment Model
6
作者 Tong Youtang & Wang JianmingDalian University of Technology, Dalian 110624, P. R. China Dalian Naval Academy, Dalian 116018, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期41-46,共6页
Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measur-ing standard have been developed. It is very difficult to establish a threat-judgment model with high reliabili... Threat-judgment is a complicated fuzzy inference problem. Up to now no relevant unified theory and measur-ing standard have been developed. It is very difficult to establish a threat-judgment model with high reliability in the airdefense system for the naval warships. Air target threat level judgment is an important component in naval warship com-bat command decision-making systems. According to the threat level judgment of air targets during the air defense of sin-gle naval warship, a fuzzy pattern recognition model for judging the threat from air targets is established. Then an algo-rithm for identifying the parameters in the model is presented. The model has an adaptive feature and can dynamicallyupdate its parameters according to the state change of the attacking targets and the environment. The method presentedhere can be used for the air defense system threat judgment in the naval warships. 展开更多
关键词 Air targets Threat judgment Fuzzy pattern recognition Fuzzy sets
在线阅读 下载PDF
Circular object recognition based on shape parameters 被引量:1
7
作者 Chen Aijun Li Jinzong Zhu Bing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期199-204,共6页
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ... To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen. 展开更多
关键词 Circular object pattern recognition Shape parameter Region labeling Image segmentation
在线阅读 下载PDF
Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain 被引量:1
8
作者 Han-shan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期273-283,共11页
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization... In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm. 展开更多
关键词 Six sky-screens intersection test system pattern recognition Particle swarm optimization Support vector machine PROJECTILE
在线阅读 下载PDF
Posterior probability calculation procedure for recognition rate comparison 被引量:1
9
作者 Jun He Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期700-711,共12页
This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition ... This paper focuses on the recognition rate comparison for competing recognition algorithms, which is a common problem of many pattern recognition research areas. The paper firstly reviews some traditional recognition rate comparison procedures and discusses their limitations. A new method, the posterior probability calculation(PPC) procedure is then proposed based on Bayesian technique. The paper analyzes the basic principle, process steps and computational complexity of the PPC procedure. In the Bayesian view, the posterior probability represents the credible degree(equal to confidence level) of the comparison results. The posterior probability of correctly selecting or sorting the competing recognition algorithms is derived, and the minimum sample size requirement is also pre-estimated and given out by the form of tables. To further illustrate how to use our method, the PPC procedure is used to prove the rationality of the experiential choice in one application and then to calculate the confidence level with the fixed-size datasets in another application. These applications reveal the superiority of the PPC procedure, and the discussions about the stopping rule further explain the underlying statistical causes. Finally we conclude that the PPC procedure achieves all the expected functions and be superior to the traditional methods. 展开更多
关键词 pattern recognition performance evaluation algorithm uncertainty analysis
在线阅读 下载PDF
Automatic recognition and quantitative analysis of Ω phases in Al-Cu-Mg-Ag alloy
10
作者 刘冰滨 谷艳霞 +1 位作者 刘志义 田小林 《Journal of Central South University》 SCIE EI CAS 2014年第5期1696-1704,共9页
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi... The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved. 展开更多
关键词 auto pattern recognition top-hat transformation second phases in A1 alloy quantitative analysis
在线阅读 下载PDF
基于改进YOLOv8的果园复杂环境下苹果检测模型研究 被引量:2
11
作者 岳有军 漆潇 +1 位作者 赵辉 王红君 《南京信息工程大学学报》 北大核心 2025年第1期31-41,共11页
为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本文提出一种基于改进YOLOv8的苹果果实检测模型.首先,将EMA注意力机制模块集成到YOLOv... 为了使采摘机器人能够在果园复杂环境下(如不同光照条件、叶子遮挡、密集的苹果群和超远视距等场景)对成熟程度各异的苹果果实进行快速且精确的检测,本文提出一种基于改进YOLOv8的苹果果实检测模型.首先,将EMA注意力机制模块集成到YOLOv8模型中,使模型更加关注待检测果实区域,抑制背景和枝叶遮挡等一般特征信息,提高被遮挡果实的检测准确率;其次,使用提取特征更加高效的三支路DWR模块对原始C2f模块进行替换,通过多尺度特征融合方法提高小目标检测能力;同时结合DAMO-YOLO的思想,对原始YOLOv8颈部进行重构,实现高层语义和低层空间特征的高效融合;最后,使用Inner-SIoU损失函数对模型进行优化,提高识别精度.在复杂的果园环境中,以苹果作为检测对象,实验结果表明:本文所提算法在测试集下的查准率、召回率、mAP_(0.5)、mAP_(0.5~0.95)以及F1分数分别达到86.1%、89.2%、94.0%、64.4%和87.6%,改进后的算法在大部分指标上均优于原始模型.在不同数量果实场景下的对比实验结果表明,该方法具有优异的鲁棒性. 展开更多
关键词 模式识别 深度学习 目标检测 YOLOv8
在线阅读 下载PDF
紫外可见光谱结合化学模式识别对紫苏油的真伪鉴别 被引量:2
12
作者 卞希慧 刘雨 +2 位作者 王瑶 张强 张妍 《分析测试学报》 北大核心 2025年第2期229-237,共9页
作为高经济价值且昂贵的非常规植物油,紫苏油易被低价食用油掺假。由于食用油的匀质性及其组成的复杂性,传统鉴别方法难以快速准确地鉴别紫苏油的真伪。该文探索了紫外可见光谱结合化学模式识别对紫苏油真伪鉴别的可行性。首先购买了40... 作为高经济价值且昂贵的非常规植物油,紫苏油易被低价食用油掺假。由于食用油的匀质性及其组成的复杂性,传统鉴别方法难以快速准确地鉴别紫苏油的真伪。该文探索了紫外可见光谱结合化学模式识别对紫苏油真伪鉴别的可行性。首先购买了40个纯紫苏油样品,并将大豆油、棕榈油分别按一定的比例加入到纯紫苏油中配制了51个二元掺伪和63个三元掺伪紫苏油样品。根据鉴别目的,从154个总样品中获得两个数据集,一个是由40个纯紫苏油和114个掺伪紫苏油构成的真伪紫苏油二分类数据集;另一个是由40个纯紫苏油、51个二元掺伪和63个三元掺伪紫苏油构成的真伪紫苏油三分类数据集。然后采用主成分分析(PCA)、簇类独立软模式(SIMCA)、偏最小二乘-判别分析(PLS-DA)和极限学习机(ELM)4种方法,依次对以上两个数据集进行分类。使用混淆矩阵可视化分类结果,并用准确率、精确率、召回率、F1分数对模型性能进行评价。结果表明,对于真伪紫苏油二分类和三分类数据集,PLS-DA均为最佳模型,预测准确率分别为98.04%和100%。因此,紫外可见光谱结合化学模式识别可以实现真伪紫苏油的快速准确鉴别。 展开更多
关键词 紫苏油 紫外可见光谱 化学模式识别 真伪鉴别
在线阅读 下载PDF
基于无参数聚类和改进支持向量机多特征融合的控制图模式识别 被引量:1
13
作者 潘柏松 邱敏鹏 钱丽娟 《计算机集成制造系统》 北大核心 2025年第3期855-868,共14页
为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计... 为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计特征以及形状特征进行融合,通过交叉实验获取最优特征组合。借助白鲸算法改进支持向量机分类器,实现对控制图异常模式的准确高效识别。通过仿真实验比较了不同分类器在不同数据集复杂程度下的识别准确性和效率,结果显示,所提出的分类模型对数据集复杂程度的影响较小,即使在复杂数据集上也能保持98.63%以上的识别精度,并具备训练速度快、计算复杂度低的优点。 展开更多
关键词 控制图 模式识别 特征融合 无参数聚类
在线阅读 下载PDF
‘茗科1号’茶鲜叶转录和代谢轮廓的模式识别研究
14
作者 陈林 项丽慧 +2 位作者 宋振硕 陈键 张应根 《热带亚热带植物学报》 北大核心 2025年第3期241-252,共12页
为挖掘乌龙茶品种鲜叶的特征特性,以绿茶品种‘福鼎大毫茶’一芽二叶或三叶为对照(CK),分析比较了高香优质乌龙茶品种‘茗科1号’一芽二叶或三叶(TM)与中小开面二至四叶(MM)在转录和代谢水平的组成差异。结果表明,茶树品种特性和采摘标... 为挖掘乌龙茶品种鲜叶的特征特性,以绿茶品种‘福鼎大毫茶’一芽二叶或三叶为对照(CK),分析比较了高香优质乌龙茶品种‘茗科1号’一芽二叶或三叶(TM)与中小开面二至四叶(MM)在转录和代谢水平的组成差异。结果表明,茶树品种特性和采摘标准为影响茶鲜叶转录和代谢轮廓的重要因素,其中CK、TM和MM的转录与代谢轮廓相互间均有良好的模式区分。差异表达基因与差异代谢物的富集和关联分析结果表明,TM vs CK与MM vs TM的差异表达基因在分子功能、细胞组分和生物过程方面存在不同的GO功能富集模式,且前者拥有较多的生物过程和较少的细胞组分;“植物次生代谢产物的生物合成”、“精氨酸和脯氨酸代谢”与“类胡萝卜素生物合成”、“苯丙素的生物合成”、“甘氨酸、丝氨酸和苏氨酸代谢”分别是TM vsCK、MM vs TM在2种组学分析中的前20条共有KEGG富集代谢通路。TM vs CK中L-苯丙氨酸、反式肉桂酸和4-胍基丁酸丰度的显著降低,以及MM vs TM中胆碱丰度的显著提高和L-苯丙氨酸、L-色氨酸、L-高丝氨酸丰度的显著降低均与相应共富集代谢通路中多个基因的显著上调或下调表达密切相关。此外,MM vs TM中脱落酸丰度的显著提高与“类胡萝卜素生物合成”通路中紫黄质脱环氧化酶和番茄红素β-环化酶基因的显著上调表达高度相关。这可为阐明‘茗科1号’茶鲜叶生物学特征及其多茶类兼制特性提供参考依据。 展开更多
关键词 乌龙茶 鲜叶 转录组 代谢组 模式识别
在线阅读 下载PDF
加速传感器在运动模式弱标签识别中的应用研究
15
作者 李颜瑞 郑锦波 《传感技术学报》 北大核心 2025年第7期1333-1338,共6页
由于运动信息标注的不完整性,导致模式识别过程易出现信息丢失、加速度变化等问题。为此,提出一种利用加速传感器在运动模式弱标签识别中的应用方法。通过加速传感器采集目标在运动过程中的加速度,构建信息采集平台和传感器网络采集动... 由于运动信息标注的不完整性,导致模式识别过程易出现信息丢失、加速度变化等问题。为此,提出一种利用加速传感器在运动模式弱标签识别中的应用方法。通过加速传感器采集目标在运动过程中的加速度,构建信息采集平台和传感器网络采集动态目标的运动信息。将不完整的运动信息整合成运动模式弱标签集合,并采用语义邻域学习算法对其进行填补,在填补后的弱标签集合中,提取弱标签数据特征,将所有特征的相关统计量按重要程度从大到小排序,并选取前面的特征作为输入,使用决策树完成对运动模式的识别。仿真结果表明,所提方法的识别时间在3.5 s内、置信度在90%以上,相比于其他方法,置信度提高了15%以上,且识别准确率高。 展开更多
关键词 机器学习 模式识别 仿真实验 弱标签识别 加速传感器 语义邻域学习算法
在线阅读 下载PDF
基于自注意力机制与高斯混合变分自编码器的飞行轨迹聚类方法研究
16
作者 张召悦 李莎 鲍水达 《河南科技大学学报(自然科学版)》 北大核心 2025年第1期25-33,M0003,M0004,共11页
为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个... 为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个高斯分布组成的潜在空间,同时依据轨迹分布特征进行聚类。考虑到GMVAE无法兼顾潜在特征的全局关键信息,将自注意力机制嵌入到编码器中,以便于在特征提取时能够捕获全局依赖关系并自动分配权重,突出关键特征,提升轨迹聚类效果。最后,以天津滨海国际机场的进场飞行轨迹数据集为例验证了模型的有效性,实验结果表明:SA-GMVAE相较于K-means、DBSCAN、DTW+HDBSCAN、AE+DP与AE+GMM 5种聚类方法,轮廓系数分别提高了27.6%、20.2%、18.2%、18.6%、15.7%;与未引入自注意力机制的GMVAE聚类模型相比,轮廓系数提高了9.5%,能够更准确地对飞行轨迹进行聚类。 展开更多
关键词 飞行轨迹 模式识别 变分自编码器 自注意力机制
在线阅读 下载PDF
基于改进FSM步态检测的PDR定位算法
17
作者 王中元 王少威 +2 位作者 杨振宇 丁旭东 徐丽晶 《中国惯性技术学报》 北大核心 2025年第2期133-139,共7页
为提高行人航迹推算(PDR)的定位精度,提出一种基于改进有限状态机(FSM)步态检测的PDR定位算法。通过引入基于K近邻的手机姿态识别算法,实现FSM步态检测算法中各项判断阈值的自适应调整,从而提高步态检测的精度和普适性,并针对不同手机... 为提高行人航迹推算(PDR)的定位精度,提出一种基于改进有限状态机(FSM)步态检测的PDR定位算法。通过引入基于K近邻的手机姿态识别算法,实现FSM步态检测算法中各项判断阈值的自适应调整,从而提高步态检测的精度和普适性,并针对不同手机姿态建立相应的Weinberg步长估计模型,增强PDR定位的鲁棒性。实验结果表明,改进步态检测算法不仅可以有效适应各种运动状态,而且各种手机姿态下的检测准确率均达到95%以上;相比基于波峰检测法的PDR模型,改进的PDR模型在四种手机姿态下的距离误差分别减小了91.4%、91.1%、84.6%和33.5%;而与基于传统FSM的PDR模型相比,距离误差则分别减小了61.5%、45.9%、78.5%和3.9%,有效提高了PDR定位精度。 展开更多
关键词 行人航迹推算 有限状态机 步态检测 模式识别
在线阅读 下载PDF
基于COA-CNN的滚动轴承故障诊断方法研究
18
作者 别锋锋 周兆龙 +3 位作者 李倩倩 丁学平 袁为栋 张瀚阳 《噪声与振动控制》 北大核心 2025年第4期136-142,共7页
滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)... 滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)的故障诊断方法。首先利用差分连续小波变换(Difference Continuous Wavelet Transform,DCWT)对原始振动信号进行预处理,获取包含完整原始特征信息的小波时频图,通过构建COA-CNN模型优化神经网络的核心参数,对所获取的时频特征信息进行识别,由此完成滚动轴承的非平稳信息的提取和模式识别。实验仿真和工程应用研究表明,在复杂工况下该方法可以有效实现滚动轴承典型故障模式的识别。 展开更多
关键词 故障诊断 滚动轴承 卷积神经网络 小波变换 时频图 模式识别
在线阅读 下载PDF
基于HPLC指纹图谱相似度分析和化学模式识别的西藏药用麻黄品种研究
19
作者 张勇仓 白玛卓玛 +2 位作者 强巴 旦增尼玛 刘兰 《高原科学研究》 2025年第2期72-81,共10页
目的:基于HPLC图谱相似度分析和化学模式识别对西藏药用麻黄品种进行研究。方法:HPLC采用Phenomenex luna-C18色谱柱(4.6 mm×250 mm,5μm);流动相A:磷酸(0.05%)-三乙胺(0.05%)水溶液,流动相B:乙腈,梯度洗脱;柱温30℃;流速1.0 mL/m... 目的:基于HPLC图谱相似度分析和化学模式识别对西藏药用麻黄品种进行研究。方法:HPLC采用Phenomenex luna-C18色谱柱(4.6 mm×250 mm,5μm);流动相A:磷酸(0.05%)-三乙胺(0.05%)水溶液,流动相B:乙腈,梯度洗脱;柱温30℃;流速1.0 mL/min;检测波长200 nm。选取各批次麻黄药材色谱图中的主要共有峰作为变量,运用SPSS 21.0软件进行聚类分析和主成分分析对药材进行化学模式识别。结果:12批西藏药用麻黄HPLC指纹图谱中有8个共有峰,相似度在0.546~0.922之间;12批样品聚类分为4大类,与主成分分析结果基本一致,表现出明显的按生境聚类的特征。结论:该方法稳定可靠,可为西藏药用麻黄品种研究和质量控制提供参考。 展开更多
关键词 西藏药用麻黄 HPLC指纹图谱 化学模式识别 品种研究
在线阅读 下载PDF
三种多次波自适应匹配相减方法的对比 被引量:1
20
作者 包培楠 石颖 +1 位作者 韩宏伟 尚新民 《石油地球物理勘探》 北大核心 2025年第2期354-362,共9页
多次波降低了地震资料的信噪比,影响有效波的识别,从而使地震处理难度增加、地震成像的真实性及可靠性降低,甚至形成地质假象,影响后续的地震勘探与开发。基于波动理论的预测相减多次波压制方法能更好地适应复杂介质情况,主要分为两步:... 多次波降低了地震资料的信噪比,影响有效波的识别,从而使地震处理难度增加、地震成像的真实性及可靠性降低,甚至形成地质假象,影响后续的地震勘探与开发。基于波动理论的预测相减多次波压制方法能更好地适应复杂介质情况,主要分为两步:多次波预测和自适应匹配相减。这两个步骤都影响最终的多次波压制精度。文中对比了三种自适应匹配相减方法:基于能量最小原则的自适应匹配减法、模式识别匹配减法以及深度学习自适应匹配减法,并分析了各方法优缺点及适应性条件。含表面多次波的模型数据和含层间多次波的实际资料测试结果表明,基于能量最小原则的自适应相减算法存在子波一致性假设条件,基于模式识别的自适应相减技术对地震数据横向一致性等要求较高。与前两种传统的自适应减法相比,基于深度学习的自适应匹配减法能够避免假设条件,可有效保护一次波,计算精度较高。 展开更多
关键词 多次波压制 自适应匹配相减 能量最小原则 模式识别 深度学习
在线阅读 下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部