期刊文献+
共找到1,647篇文章
< 1 2 83 >
每页显示 20 50 100
Tomato detection method using domain adaptive learning for dense planting environments 被引量:1
1
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
在线阅读 下载PDF
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:1
2
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 graph Transformer 图表示学习 节点分类
在线阅读 下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
3
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
在线阅读 下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
4
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
5
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis graph neural networks graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
一种基于子图近似同构的e-Learning学习资源本体匹配方法 被引量:1
6
作者 习海旭 于枫 +2 位作者 王直 宋爱波 王晓跃 《计算机应用研究》 CSCD 北大核心 2014年第2期417-421,434,共6页
针对e-Learning学习资源本体异构问题,提出一种基于子图近似同构的本体匹配方法。该方法对现有本体匹配方法进行扩展,综合编辑距离、层次关系等特征,计算本体的结构级相似性,以点、边有序交替匹配来判断实体的有向图近似同构问题,实现... 针对e-Learning学习资源本体异构问题,提出一种基于子图近似同构的本体匹配方法。该方法对现有本体匹配方法进行扩展,综合编辑距离、层次关系等特征,计算本体的结构级相似性,以点、边有序交替匹配来判断实体的有向图近似同构问题,实现本体匹配判定。演示算法处理过程,给出算法时间复杂度理论分析,说明其有效性。 展开更多
关键词 本体匹配 e—learning学习资源本体 子图同构 时间复杂性
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
7
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
Graph Transformers研究进展综述 被引量:2
8
作者 周诚辰 于千城 +2 位作者 张丽丝 胡智勇 赵明智 《计算机工程与应用》 CSCD 北大核心 2024年第14期37-49,共13页
随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习... 随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习到更好的特征表示。根据对近年来GTs相关文献的研究,将现有的模型架构分为两类:第一类通过绝对编码和相对编码向Transformers中加入图的位置和结构信息,以增强Transformers对图结构数据的理解和处理能力;第二类根据不同的方式(串行、交替、并行)将GNN与Transformers进行结合,以充分利用两者的优势。介绍了GTs在信息安全、药物发现和知识图谱等领域的应用,对比总结了不同用途的模型及其优缺点。最后,从可扩展性、复杂图、更好的结合方式等方面分析了GTs未来研究面临的挑战。 展开更多
关键词 graph Transformers(GTs) 图神经网络 图表示学习 异构图
在线阅读 下载PDF
Role-based Context-specific Multiagent Q-learning 被引量:1
9
作者 JIANG Da-Wei WANG Shi-Yuan DONG Yi-Sheng 《自动化学报》 EI CSCD 北大核心 2007年第6期583-587,共5页
在合作 multiagent 学习的主要问题之一是联合行动空间与代理人的数字指数地成长。在这份报纸,我们调查在代理人之间的协作相关性的一个稀少的代表采用角色和上下文特定的协作图减少联合行动空间。在我们的框架,全球联合 Q 功能被分... 在合作 multiagent 学习的主要问题之一是联合行动空间与代理人的数字指数地成长。在这份报纸,我们调查在代理人之间的协作相关性的一个稀少的代表采用角色和上下文特定的协作图减少联合行动空间。在我们的框架,全球联合 Q 功能被分解成很多本地 Q 功能。各本地的 Q 功能在代理人的一个小组之中被分享并且由一套价值规则组成。我们建议自动地在每条价值规则学习重量的一个新奇 multiagent 学习 Q 算法。我们给实验证据证明我们的学习算法比学习技术的传统的 multiagent 以显著地更快的速度收敛到一样的最佳的政策。 展开更多
关键词 多主体合作 Q函数 角色 算法 特定合作曲线图 自动化
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
10
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
在线阅读 下载PDF
基于Graph Transformer的半监督异配图表示学习模型
11
作者 黎施彬 龚俊 汤圣君 《计算机应用》 CSCD 北大核心 2024年第6期1816-1823,共8页
现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半... 现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半监督异配图表示学习模型HPGT(HeteroPhilic Graph Transformer)。首先,使用度连接概率矩阵采样节点的路径邻域,再通过自注意力机制自适应地聚合路径上的节点异配连接模式,编码得到节点的结构信息,用节点的原始属性信息和结构信息构建Transformer层的自注意力模块;其次,将每个节点自身的隐层表示与它的邻域节点的隐层表示分离更新以避免节点通过自注意力模块聚合过量的自身信息,再把每个节点表示与它的邻域表示连接,得到单个Transformer层的输出,另外,将所有的Transformer层的输出跳连到最终的节点隐层表示以防止中间层信息丢失;最后,使用线性层和Softmax层将节点的隐层表示映射到节点的预测标签。实验结果表明,与无结构编码(SE)的模型相比,基于度连接概率的SE能为Transformer层的自注意力模块提供有效的偏差信息,HPGT平均准确率提升0.99%~11.98%;与对比模型相比,在异配数据集(Texas、Cornell、Wisconsin和Actor)上,模型节点分类准确率提升0.21%~1.69%,在同配数据集(Cora、CiteSeer和PubMed)上,节点分类准确率分别达到了0.8379、0.7467和0.8862。以上结果验证了HPGT具有较强的异配图表示学习能力,尤其适用于强异配图节点分类任务。 展开更多
关键词 图卷积网络 异配图 图表示学习 graph Transformer 节点分类
在线阅读 下载PDF
图联邦学习:问题、方法与挑战 被引量:1
12
作者 王鑫 熊书博 孙凌云 《计算机科学》 北大核心 2025年第1期362-373,共12页
图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用。近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效。尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据... 图作为一种高效、灵活、通用的数据结构,在多个学科领域得到了广泛应用。近年来,基于图的深度学习算法不断涌现,并在社交网络、生物信息学、推荐系统等领域取得显著成效。尽管公开的图数据量在增加,但高质量的数据往往分散在不同的数据所有者手中。随着社会对数据隐私保护要求的提高,现有的图学习算法面临着许多挑战。图联邦学习作为一种有效的解决方案应运而生。文中系统回顾了图联邦学习领域近五年的研究进展,将该领域的核心问题划分为3个部分,并在结构上进行了垂直整合,在关系上进行了递进阐述,包括:1)原始图数据差异导致的结构异构性;2)图联邦特性导致的模型聚合问题;3)模型整体调优方面的挑战。针对每个问题,详细分析了代表性工作及其优缺点,并总结了图联邦学习领域的典型应用和未来挑战。 展开更多
关键词 联邦学习 图神经网络 图联邦学习 隐私计算
在线阅读 下载PDF
知识图谱驱动智能学习的内生逻辑 被引量:7
13
作者 吴杨 吕钰琪 +2 位作者 杜钧 牛红伟 郝佳 《中国电化教育》 北大核心 2025年第2期122-130,共9页
知识图谱愈加成为教育数字化基础设施的重要组成部分,相关应用逐渐增多,但知识图谱作用于教与学的应用逻辑与应用场景仍有待挖掘。基于当前的智能学习面临着碎片化严重、联通性不足、知识库缺失的问题,该研究以经典学习理论为基础,以学... 知识图谱愈加成为教育数字化基础设施的重要组成部分,相关应用逐渐增多,但知识图谱作用于教与学的应用逻辑与应用场景仍有待挖掘。基于当前的智能学习面临着碎片化严重、联通性不足、知识库缺失的问题,该研究以经典学习理论为基础,以学习者处理学习任务时的认知活动为状态,从认知心理的角度探究知识图谱驱动下的智能学习机制,为解决三个主要问题提出针对性的解决方案。第一,针对知识碎片化的问题,知识图谱通过将知识串联成网络,促进学习中的认知加工,减少碎片化学习;第二,针对知识点冗余的问题,知识图谱通过合并相同知识点、增加跨学科知识的联系,提高了学习中的智能联结,激发学习者主动探索,并主动形成知识构建活动;第三,针对知识库缺失的问题,知识图谱平台通过集成知识点、学习资源库与学生的学习行为,使学习的个性化推荐有据可依。基于学习者运用知识图谱学习的理论机制,未来知识图谱的教育教学创新方向将聚焦于个性化、自适应、探索性、反馈性的学习平台搭建,为推进教育教学的智能化变革提供理论支撑。 展开更多
关键词 知识图谱 智能学习 认知机制 学习理论
在线阅读 下载PDF
数据驱动的个性化学习:实然问题、应然逻辑与实现路径 被引量:6
14
作者 钟绍春 杨澜 范佳荣 《电化教育研究》 北大核心 2025年第1期13-19,33,共8页
教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高... 教育数字化转型的全面推进和人工智能在教育中的广泛应用,为破解个性化学习难题提供了切实可行的途径,数据驱动的个性化学习已成为教育高质量发展的必由之路。然而,当前数据驱动的个性化学习普遍存在着学习行为感知与状态评价精度不高、学习特征挖掘不准、学习规律挖掘不全、学习问题溯源不深、学习干预精度不佳等瓶颈性难题。为此,研究从情境感知、主体理解和智能干预等方面深入剖析了数据驱动个性化学习的应然逻辑。在此基础上,从学习行为数据有效感知与理解、学习效果精准评估的个性化学习追踪、薄弱知识点和异常学习行为的学习问题成因溯源、潜在交互学习规律发现的教育知识图谱高阶推理、公共学习路网构建与高适配个性化学习路径规划等方面,讨论了数据驱动个性化学习的实现路径和方法。 展开更多
关键词 个性化学习 数据驱动 情境感知 学习路径规划 教育知识图谱
在线阅读 下载PDF
车联网边缘计算环境下基于流量预测的高效任务卸载策略研究 被引量:1
15
作者 许小龙 杨威 +4 位作者 杨辰翊 程勇 齐连永 项昊龙 窦万春 《电子学报》 北大核心 2025年第2期329-343,共15页
车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不... 车联网(Internet of Vehicles,IoV)边缘计算通过将移动边缘计算和车联网相结合,实现了车辆计算任务从云服务器向边缘服务器的下沉,从而有效降低了车联网服务的响应时延.然而,车联网中不规则的交通流时空分布会导致边缘服务器计算负载不均衡,进而影响车联网服务的实时响应.为此,本文提出了一种车联网边缘计算环境下基于流量预测的高效任务卸载策略.具体而言,首先设计了能充分挖掘路段间连通性和距离信息的切比雪夫图加权网络(Chebyshev graph Weighted Network,ChebWN)进行交通流量预测.然后,设计了一种基于深度强化学习的二元任务卸载方法(DRL-based Binary task Offloading Algorithm,DBOA),该算法将二元任务卸载的决策过程分为两个阶段,即首先通过深度强化学习得到卸载策略,再通过一维双端查找算法确定最大化总计算速率的时间片分配方案,降低了决策过程的复杂度.最后,通过大量的对比实验验证了ChebWN在预测交通流量方面的准确性,以及DBOA在提升车联网服务响应速度方面的优越性. 展开更多
关键词 移动边缘计算 深度强化学习 车联网 图神经网络(GNN) 任务卸载
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测 被引量:1
16
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于HDNNF-CAF的短时交通流预测研究 被引量:1
17
作者 王庆荣 慕壮壮 +1 位作者 朱昌锋 何润田 《计算机工程与应用》 北大核心 2025年第15期318-328,共11页
短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou... 短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。 展开更多
关键词 短时交通流 预测 深度学习 图卷积网络 时空信息
在线阅读 下载PDF
基于自适应增强的多视图对比推荐算法 被引量:1
18
作者 姚迅 王海鹏 +1 位作者 胡新荣 杨捷 《计算机工程》 北大核心 2025年第5期103-113,共11页
近年来,基于神经网络架构的推荐系统取得了显著成功,但在处理富含流行偏见和交互噪声的数据时,未能达到期望的效果。对比学习作为一种从无标记数据中学习的新兴技术备受关注,为解决这一问题提供了潜在方案。提出一种端到端的图对比推荐... 近年来,基于神经网络架构的推荐系统取得了显著成功,但在处理富含流行偏见和交互噪声的数据时,未能达到期望的效果。对比学习作为一种从无标记数据中学习的新兴技术备受关注,为解决这一问题提供了潜在方案。提出一种端到端的图对比推荐算法AMV-CL。首先,基于节点的潜在表征构建用户-项目交互图的互补图;其次,引入自适应增强技术,分别从节点和边缘角度生成多视图数据,并通过重参数化网络调整图结构;最后,规范化对比损失中锚节点的正样本来源,同时利用多视图对比损失来学习用户/项目的潜在表征。在公共数据集上的实验结果显示,相较于最优基准方法SimGCL,AMV-CL在评价指标Recall@20和NDCG@20上的提升最高可达到12.03%和12.64%,表明所提方法能够有效提升推荐性能。 展开更多
关键词 图神经网络 推荐系统 多视图 对比学习 自适应增强
在线阅读 下载PDF
图对比学习研究进展 被引量:1
19
作者 吴国栋 吴贞畅 +2 位作者 王雪妮 胡全兴 秦辉 《小型微型计算机系统》 北大核心 2025年第1期44-54,共11页
图对比学习可以提取无标注数据自身信息作为自监督信号指导模型训练,并帮助缓解图神经网络对标签数据的依赖及结构不公平等问题,已成为图神经网络领域的研究热点.本文从数据增广方式、样本对构造、对比学习粒度3个方面对现有图对比学习... 图对比学习可以提取无标注数据自身信息作为自监督信号指导模型训练,并帮助缓解图神经网络对标签数据的依赖及结构不公平等问题,已成为图神经网络领域的研究热点.本文从数据增广方式、样本对构造、对比学习粒度3个方面对现有图对比学习研究进行了深入探讨,分析了已有不同图对比学习研究方法各自的优点与不足.在此基础上,指出了现有图对比学习研究存在的问题,并提出了自适应性图对比学习、上下文图对比学习、动态图对比学习、超图对比学习、因果推断图对比学习、无负样本图对比学习及基于大语言模型的图对比学习等未来图对比学习的研究方向. 展开更多
关键词 图对比学习 研究进展 数据增广 样本对 对比粒度
在线阅读 下载PDF
结合对比学习和双流网络融合知识图谱摘要模型 被引量:1
20
作者 赵霞 王钊 《计算机应用研究》 北大核心 2025年第3期720-727,共8页
提出了一种融合对比学习与双流网络的新型知识图谱摘要模型(KGDR-CLSUM),旨在解决现有模型在生成摘要时存在的事实性错误和信息提取不足的问题。该模型通过设计双流网络同时处理文本特征和知识图谱特征,并采用对比学习来强化这两类特征... 提出了一种融合对比学习与双流网络的新型知识图谱摘要模型(KGDR-CLSUM),旨在解决现有模型在生成摘要时存在的事实性错误和信息提取不足的问题。该模型通过设计双流网络同时处理文本特征和知识图谱特征,并采用对比学习来强化这两类特征的有效融合。此外,引入动量蒸馏策略以降低知识图谱中的数据噪声,从而提升摘要生成的质量和准确性。在CNN/Daily Mail数据集上,KGDR-CLSUM相较于基线模型PEGASUS BASE,在ROUGE-1、ROUGE-2和ROUGE-L指标上分别提升了3.03%、3.42%和2.56%,在XSum数据集上更是达到了7.54%、8.78%和8.51%的显著提升。此外,人工评分显著高于ChatGPT,进一步证明了该模型的优越性能。结果表明,KGDR-CLSUM在生成摘要时,尤其在短文本生成任务中,能够有效降低错误信息,并显著提高摘要的质量。 展开更多
关键词 文本摘要 知识图谱 动量蒸馏 对比学习 双流网络
在线阅读 下载PDF
上一页 1 2 83 下一页 到第
使用帮助 返回顶部