Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ...Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.展开更多
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation....For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.展开更多
Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed ...Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.展开更多
Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging re...Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.展开更多
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th...With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.展开更多
According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searc...According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searching. The construction of network proceeds in three phases: the skeleton extraction of the configuration space, the judgment of the cross points in the skeleton and how to link the cross points to form a network. Multipath searching makes use of the network and iterative penalty method (IPM) to plan multi-paths, and adjusts the planar paths to satisfy the requirement of maneuverability of unmanned aerial vehicle (UAV). In addition, a new height planning method is proposed to deal with the height planning of 3D route. The proposed algorithm can find multiple paths automatically according to distribution of terrain and threat areas with high efficiency. The height planning can make 3D route following the terrain. The simulation experiment illustrates the feasibility of the proposed method.展开更多
This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communicati...This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communication radius is adaptively increasing to add the localizability. The localization process includes three steps: firstly, divide the whole globally rigid graph into several small rigid blocks; secondly, set up the local coordinate systems and transform them to global coordinate system; finally, use the quadrilateration iteration technology to locate the nodes in the wireless sensor network. This algorithm has the advantages of low energy consumption, low computational complexity as well as high expandability and high localizability. Moreover, it can achieve the unique and accurate localization. Finally, some simulations are provided to demonstrate the effectiveness of the proposed algorithm.展开更多
Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can signi...Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.展开更多
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa...In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.展开更多
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金Project(2020YFC2008605)supported by the National Key Research and Development Project of ChinaProject(52072412)supported by the National Natural Science Foundation of ChinaProject(2021JJ30359)supported by the Natural Science Foundation of Hunan Province,China。
文摘Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.
基金supported by the National Natural Science Foundation of China(62176214).
文摘For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China (60775047)Hunan Provincial Natural Science Foundation of China (07JJ6111)
文摘Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.
基金Supported by the open project of Communication network transmission and distribution technologies Key Laboratory(ITD-12005/K1260011)the National Natural Science Foundation of China(61371126) and the National Natural Science Foundation of China(60903195)
文摘Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.
文摘With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.
基金supported by the National High Technology Research and Development Program of China(2007AA12Z166)
文摘According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searching. The construction of network proceeds in three phases: the skeleton extraction of the configuration space, the judgment of the cross points in the skeleton and how to link the cross points to form a network. Multipath searching makes use of the network and iterative penalty method (IPM) to plan multi-paths, and adjusts the planar paths to satisfy the requirement of maneuverability of unmanned aerial vehicle (UAV). In addition, a new height planning method is proposed to deal with the height planning of 3D route. The proposed algorithm can find multiple paths automatically according to distribution of terrain and threat areas with high efficiency. The height planning can make 3D route following the terrain. The simulation experiment illustrates the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(61375105 61403334)
文摘This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communication radius is adaptively increasing to add the localizability. The localization process includes three steps: firstly, divide the whole globally rigid graph into several small rigid blocks; secondly, set up the local coordinate systems and transform them to global coordinate system; finally, use the quadrilateration iteration technology to locate the nodes in the wireless sensor network. This algorithm has the advantages of low energy consumption, low computational complexity as well as high expandability and high localizability. Moreover, it can achieve the unique and accurate localization. Finally, some simulations are provided to demonstrate the effectiveness of the proposed algorithm.
文摘Numerous works prove that existing neighbor-averaging graph neural networks(GNNs)cannot efficiently catch structure features,and many works show that injecting structure,distance,position,or spatial features can significantly improve the performance of GNNs,however,injecting high-level structure and distance into GNNs is an intuitive but untouched idea.This work sheds light on this issue and proposes a scheme to enhance graph attention networks(GATs)by encoding distance and hop-wise structure statistics.Firstly,the hop-wise structure and distributional distance information are extracted based on several hop-wise ego-nets of every target node.Secondly,the derived structure information,distance information,and intrinsic features are encoded into the same vector space and then added together to get initial embedding vectors.Thirdly,the derived embedding vectors are fed into GATs,such as GAT and adaptive graph diffusion network(AGDN)to get the soft labels.Fourthly,the soft labels are fed into correct and smooth(C&S)to conduct label propagation and get final predictions.Experiments show that the distance and hop-wise structures encoding enhanced graph attention networks(DHSEGATs)achieve a competitive result.
文摘In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.