期刊文献+
共找到345篇文章
< 1 2 18 >
每页显示 20 50 100
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
1
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction graph convolutional network Long short-term memory network
在线阅读 下载PDF
Adaptive Graph Convolutional Recurrent Neural Networks for System-Level Mobile Traffic Forecasting
2
作者 Yi Zhang Min Zhang +4 位作者 Yihan Gui Yu Wang Hong Zhu Wenbin Chen Danshi Wang 《China Communications》 SCIE CSCD 2023年第10期200-211,共12页
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ... Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches. 展开更多
关键词 adaptive graph convolutional network mobile traffic prediction spatial-temporal dependence
在线阅读 下载PDF
RNAGCN:RNA tertiary structure assessment with a graph convolutional network
3
作者 Chengwei Deng Yunxin Tang +3 位作者 Jian Zhang Wenfei Li Jun Wang Wei Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期155-163,共9页
RNAs play crucial and versatile roles in cellular biochemical reactions.Since experimental approaches of determining their three-dimensional(3D)structures are costly and less efficient,it is greatly advantageous to de... RNAs play crucial and versatile roles in cellular biochemical reactions.Since experimental approaches of determining their three-dimensional(3D)structures are costly and less efficient,it is greatly advantageous to develop computational methods to predict RNA 3D structures.For these methods,designing a model or scoring function for structure quality assessment is an essential step but this step poses challenges.In this study,we designed and trained a deep learning model to tackle this problem.The model was based on a graph convolutional network(GCN)and named RNAGCN.The model provided a natural way of representing RNA structures,avoided complex algorithms to preserve atomic rotational equivalence,and was capable of extracting features automatically out of structural patterns.Testing results on two datasets convincingly demonstrated that RNAGCN performs similarly to or better than four leading scoring functions.Our approach provides an alternative way of RNA tertiary structure assessment and may facilitate RNA structure predictions.RNAGCN can be downloaded from https://gitee.com/dcw-RNAGCN/rnagcn. 展开更多
关键词 RNA structure predictions scoring function graph convolutional network deep learning RNA-puzzles
在线阅读 下载PDF
Task Offloading and Resource Allocation in NOMA-VEC:A Multi-Agent Deep Graph Reinforcement Learning Algorithm
4
作者 Hu Yonghui Jin Zuodong +1 位作者 Qi Peng Tao Dan 《China Communications》 SCIE CSCD 2024年第8期79-88,共10页
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in im... Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility. 展开更多
关键词 edge computing graph convolutional network reinforcement learning task offloading
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
5
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
面向点云理解的双邻域图卷积方法
6
作者 李宗民 徐畅 +2 位作者 白云 鲜世洋 戎光彩 《浙江大学学报(工学版)》 北大核心 2025年第5期879-889,共11页
针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计... 针对现有方法对局部点云结构建模时空间跨度有限以及传统特征聚合方法造成一定信息损失的问题,提出双邻域图卷积网络(DNGCN).在原始点云中增加角度先验,以增强对点云局部几何结构的理解,捕捉局部细节.对原始邻域进行扩展,在局域内设计双邻域图卷积,通过集成高斯自适应聚合,在提取较大感受野范围内显著特征的同时,充分保留原始邻域信息.通过局部-全局信息交互来增大局部点的空间跨度,捕获远距离依赖关系.本文方法在分类数据集ModelNet40和ScanObjectNN上分别取得了94.1%、89.6%的总体精度,与其他先进算法相比有显著提升,较DGCNN分别提升了1.2%、11.5%.在部件分割数据集ShapeNetPart和语义分割数据集ScanNetv2、S3DIS上均获得优秀的性能,平均交并比分别为86.7%、74.9%和69.8%.通过大量的实验,证明了该模型的有效性. 展开更多
关键词 点云特征 图卷积网络 几何增强 局部全局交互 注意力机制
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测
7
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
基于功能性脑网络和图卷积网络的驾驶疲劳检测
8
作者 徐军莉 《汽车安全与节能学报》 北大核心 2025年第2期226-233,共8页
为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图... 为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图特征进行学习优化,实现检测分类。结果表明:该模型检测的准确率可以达到88.90%;利用度中心性发现脑网络中的14个重要电极,其中基于7个重要电极构建的GCN模型检测的准确率为87.2%,检测速度更快,综合性能优于基于30导的检测模型。 展开更多
关键词 图卷积网络(GCN) 功能性脑网络(FBN) 简化通道 驾驶疲劳
在线阅读 下载PDF
基于图卷积神经网络的露天矿车道路边界检测算法
9
作者 秦学斌 许爱珍 周毓凡 《金属矿山》 北大核心 2025年第3期181-188,共8页
由于矿山道路没有路肩且道路边界线十分模糊,因此区分道路边界线之内的可行驶区域与边界线以外的非可行驶区域成为亟待解决的问题。为提升露天矿车行驶的安全性,提出了一种基于图卷积神经网络的露天矿车道路边界检测算法。首先利用kd-t... 由于矿山道路没有路肩且道路边界线十分模糊,因此区分道路边界线之内的可行驶区域与边界线以外的非可行驶区域成为亟待解决的问题。为提升露天矿车行驶的安全性,提出了一种基于图卷积神经网络的露天矿车道路边界检测算法。首先利用kd-tree算法和基于体素化的八叉树滤波算法构成的复合索引结构对点云数据进行精简和滤波,剔除点云数据中的异常点和高噪声点;再通过基于K-means聚类对精简后的点云数据进行图卷积神经网络运算提取出地面点,非地面点通过聚类方法寻找邻域构成三角面,利用三角面的法向量拟合非地面即得到曲面;最后计算拟合最优地面和非地面的交线即为所求的道路边界线。试验结果表明:提出的道路边界检测算法能很好地检测出边界线,为矿山道路无人驾驶提供安全范围,有助于提升无人运行矿车驾驶的安全性。 展开更多
关键词 点云滤波 kd-tree算法 K-MEANS聚类 图卷积网络 边界线检测
在线阅读 下载PDF
基于自监督图卷积和注意力机制实现隐式反馈降噪的社交推荐
10
作者 郭向星 周魏 +3 位作者 杨正益 文俊浩 杨佳佳 刘蔓 《电子学报》 北大核心 2025年第1期151-162,共12页
基于图神经网络的社交推荐系统取得了较好的性能,然而,基于图神经网络的社交推荐模型存在以下挑战:基于图神经网络的模型的邻域聚集操作会放大用户的隐式行为中的噪声,使得用户和物品的向量表示存在偏差;用户物品图中的边和用户社交关... 基于图神经网络的社交推荐系统取得了较好的性能,然而,基于图神经网络的社交推荐模型存在以下挑战:基于图神经网络的模型的邻域聚集操作会放大用户的隐式行为中的噪声,使得用户和物品的向量表示存在偏差;用户物品图中的边和用户社交关系图中的边的异质性,导致基于图神经网络在两张图上学习到的用户向量表示存在于不同的语义空间,直接融合往往得到次优的向量表示.针对上述问题,本文提出了基于自监督图卷积和注意力机制实现隐式反馈降噪的社交推荐模型.该模型从原始的用户物品图中捕捉用户的真实兴趣,生成降噪的用户物品交互图;提出一种新颖的用户向量融合方法,对异质的用户向量表示进行融合.在两个公开数据集上的实验结果表明,所提出的模型在不同数据集上的推荐性能均较基线模型有显著提升.在lastfm数据集上,推荐性能提升了1.18%至3.87%;在ciao数据集上,推荐性能提升了3.56%至7.31%.通过消融实验验证了模型各个模块的有效性. 展开更多
关键词 注意力机制 隐式反馈 图卷积神经网络 自监督学习 社交推荐
在线阅读 下载PDF
异构信号图融合驱动的水电机组劣化状态评估
11
作者 张峰源 李玉鑫 +4 位作者 费一涛 刘颉 李浩亮 袁晓辉 张勇传 《水电能源科学》 北大核心 2025年第4期190-194,共5页
传统基于单一种类监测信号分析的水电机组劣化状态评估存在机组状态表征不全面、评估时序敏感性差等不足,需深入研究异构监测信号特征挖掘与状态融合表征问题,提出一种异构信号图融合表征驱动的水电机组劣化状态评估方法。首先,嵌入工... 传统基于单一种类监测信号分析的水电机组劣化状态评估存在机组状态表征不全面、评估时序敏感性差等不足,需深入研究异构监测信号特征挖掘与状态融合表征问题,提出一种异构信号图融合表征驱动的水电机组劣化状态评估方法。首先,嵌入工况信息-多源监测信号为节点特征,设计基于异构信号相似度阈值的边连接函数;然后,计算异构信号内部多重边连接关系,将同一时段内数据转换为差异化图空间结构;其次,融合图卷积网络和循环神经网络,构建兼顾时-空特征提取能力的机组健康基准模型,挖掘异构信号图中隐含的时空依赖关系以表征机组状态;进一步引入注意力机制融合图表征向量,输出预测理论健康信号值,并度量多维信号空间内预测值与实际值的距离,以评估机组综合劣化程度;最后,使用某水电机组实测数据验证所提方法能有效综合评估机组劣化。 展开更多
关键词 水电机组 劣化状态评估 多源异构信号 特征融合 图卷积网络
在线阅读 下载PDF
基于多通道图卷积神经网络的地海杂波分类方法
12
作者 李灿 王增福 +1 位作者 张效宣 潘泉 《雷达学报(中英文)》 北大核心 2025年第2期322-337,共16页
地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高... 地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高;此外,其输入为单个方位-距离单元杂波,未考虑样本的类内和类间信息,导致模型性能不佳。针对上述问题,该文通过分析相邻方位-距离单元之间的相关性,将地海杂波数据由欧氏空间转换为非欧氏空间中的图数据,引入样本之间的关系,并提出一种基于多通道图卷积神经网络(MC-GCN)的地海杂波分类方法。MC-GCN将图数据由单通道分解为多通道,每个通道只包含一种类型的边和一个权重矩阵,通过约束节点信息聚合的过程,能够有效缓解由异质性造成的节点属性误判。该文选取不同季节、不同时刻、不同探测区域RD图,依据雷达参数、数据特性和样本比例,构建包含12种不同场景的地海杂波原始数据集和36种不同配置的地海杂波稀缺数据集,并对MC-GCN的有效性进行验证。通过与最先进的地海杂波分类方法进行比较,该文所提出的MC-GCN在上述数据集中均表现最优,其分类准确率不低于92%。 展开更多
关键词 天波超视距雷达 地海杂波分类 图数据 图卷积神经网络 异质性
在线阅读 下载PDF
应用STGCN时空建模的地震波阻抗反演方法
13
作者 王泽峰 赵海波 +3 位作者 杨懋新 王团 许辉群 毛伟建 《石油地球物理勘探》 北大核心 2025年第1期43-53,共11页
现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓... 现今,深度学习地震波阻抗反演方法通常是通过低维度的时序建模,忽略了空间构造拓扑结构信息,导致反演精度较低。针对此问题,提出了一种基于STGCN(时空图卷积神经网络)时空建模的地震波阻抗反演方法。该方法考虑到地震数据的空间构造拓扑结构及互相关性,使用马氏距离对地震数据进行空间邻近度的加权处理建立邻接矩阵;进一步通过切比雪夫多项式扩大空间感受野的同时减少参数量,高效地提取地震数据的空间构造特征,同时利用门控循环单元捕获其时序相关性;最后构建时空图卷积单元实现基于STGCN的地震数据与波阻抗在时间和空间两个维度的映射。模型测试及实际资料反演结果表明,该方法在提高反演精度的同时对噪声具有一定的适应性,并可以很好的体现地层的横向变化。 展开更多
关键词 地震波阻抗反演 深度学习 时空建模 时空图卷积神经网络
在线阅读 下载PDF
基于自适应差异化图卷积的图注意力网络表示学习算法
14
作者 吴誉兰 舒建文 《现代电子技术》 北大核心 2025年第2期51-54,共4页
为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键... 为解决传统图卷积网络在处理节点间复杂关系时存在的局限性,提出一种基于自适应差异化图卷积的图注意力网络表示学习算法。采用差异化图卷积网络,依据每个节点自身特征和邻居信息进行差异化采样,捕捉节点间的复杂关系;再结合二阶段关键相邻采样方式优先挖掘重要节点并保留随机性,完成关键邻居节点的采样;然后结合图注意力网络,通过局部关注和自适应学习权重分配将关键邻居节点特征聚合到自身节点上,增强节点的特征表示;最后经网络训练,进一步增强网络表示学习能力。实验结果表明,所提出的算法优化了节点聚合程度和边界清晰度,提高了节点分类的准确性和可视化效果,并且通过关注二阶邻居和使用双头注意力,在网络表示学习上也展现出了优越性能。 展开更多
关键词 网络表示学习 图卷积网络 自适应差异化机制 节点采样 特征聚合 网络训练 图注意力网络
在线阅读 下载PDF
一种基于RGCN的多功能雷达工作模式识别方法
15
作者 郁春来 冯明月 +2 位作者 金宏斌 张福群 张强飞 《现代防御技术》 北大核心 2025年第1期120-128,共9页
多功能雷达因其灵活的工作模式和捷变的波形特征,可并行执行多种任务等优势,已获得广泛应用,对雷达情报侦察对抗带来了极大挑战。识别多功能雷达工作模式是后续威胁评估、自适应对抗和引导攻击的前提和基础,直接决定着雷达对抗措施的针... 多功能雷达因其灵活的工作模式和捷变的波形特征,可并行执行多种任务等优势,已获得广泛应用,对雷达情报侦察对抗带来了极大挑战。识别多功能雷达工作模式是后续威胁评估、自适应对抗和引导攻击的前提和基础,直接决定着雷达对抗措施的针对性和有效性。主要以典型多功能雷达为研究对象,对典型的作战场景仿真建模,在深入分析多功能雷达不同工作模式的基础上,提出了一种基于关系图卷积网络(relational graph convolutional networks,RGCN)的多功能雷达工作模式识别的新方法,实现了数据的并行化处理,解决了不同工作模式与特征参数之间的相互作用。 展开更多
关键词 多功能雷达 工作模式识别 神经网络 图卷积网络 关系图卷积网络
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断
16
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 卷积神经网络 图卷积网络 故障诊断
在线阅读 下载PDF
利用可选择多尺度图卷积网络的骨架行为识别
17
作者 曹毅 李杰 +2 位作者 叶培涛 王彦雯 吕贤海 《电子与信息学报》 北大核心 2025年第3期839-849,共11页
针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其... 针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其次,构建成对关节邻接矩阵和多关节邻接矩阵以生成多尺度通道拓扑细化邻接矩阵,并引入图卷积网络,进一步提出多尺度图卷积(MS-GC)模块,以期实现对骨架关节点的多尺度依赖关系的建模;然后,基于多尺度时序卷积和可选择大核网络,提出可选择多尺度时序卷积(SMS-TC)模块,以期实现对有用的时间上下文特征的充分提取,同时结合MS-GC和SMS-TC模块,进而提出可选择多尺度图卷积网络模型并在多支流数据输入下进行训练;最后,在NTU-RGB+D和NTU-RGB+D 120数据集上进行大量实验,实验结果表明,该模型能够捕获更多的关节特征和学习有用的时间信息,具有优异的准确率和泛化能力。 展开更多
关键词 骨架行为识别 图卷积网络 多尺度通道拓扑细化邻接矩阵 可选择多尺度时序卷积 可选择多尺度图卷积网络
在线阅读 下载PDF
结合全局信息和局部信息的三维网格分割框架
18
作者 张梦瑶 周杰 +1 位作者 李文婷 赵勇 《浙江大学学报(工学版)》 北大核心 2025年第5期912-919,共8页
针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG... 针对Graph Transformer比较擅长捕获全局信息,但对局部精细信息的提取不够充分的问题,将图卷积神经网络(GCN)引入Graph Transformer中,得到Graph Transformer and GCN (GTG)模块,构建了能够结合全局信息和局部信息的网格分割框架. GTG模块利用Graph Transformer的全局自注意力机制和GCN的局部连接性质,不仅可以捕获全局信息,还能够加强局部精细信息的提取.为了更好地保留边界区域的信息,设计边缘保持的粗化算法,可以使粗化过程仅作用在非边界区域.利用边界信息对损失函数进行加权,提高了神经网络对边界区域的关注程度.在实验方面,通过视觉效果和定量比较证明了采用本文算法能够获得高质量的分割结果,利用消融实验表明了GTG模块和边缘保持粗化算法的有效性. 展开更多
关键词 三维网格 网格分割 graph Transformer 图卷积神经网络(GCN) 边缘保持的粗化算法
在线阅读 下载PDF
噪声环境下基于域对抗图卷积网络和坐标注意力的说话人确认方法
19
作者 陈家辉 葛子瑞 +2 位作者 王天朗 郭海燕 杨震 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期57-67,共11页
为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。... 为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。首先,针对噪声环境下局部特征变得不稳定这个问题,提出引入CA模块,将全局时间信息和全局频率信息编码到通道注意力中,以强调有用通道,提取鲁棒性的说话人特征。其次,提出构建DA⁃GCN来辅助主网络提取与噪声相关性更小的说话人特征来进行后续的分类。具体而言,将语音信号映射为图信号,利用GCN分别对干净语音图信号特征和含噪语音图信号特征进行聚合,通过域对抗(Domain Adversarial,DA)训练,辅助主网络提取干净语音域和含噪语音域共享的说话人特征,从而降低噪声对SV性能的影响。在VoxCeleb1数据集上的实验结果表明,所提CA⁃DA⁃GCN的性能优于基线模型ExU⁃Net且表现出良好的泛化能力。 展开更多
关键词 噪声环境 说话人确认 域对抗 坐标注意力机制 图卷积神经网络
在线阅读 下载PDF
基于骨架识别的城轨车站监控视频乘客行为特征辨识研究
20
作者 管洋 贾利民 +1 位作者 陶思涵 豆飞 《都市快轨交通》 北大核心 2025年第1期106-111,共6页
城市轨道交通领域传统监控分析方法对视频监控图像(如摔倒、晕倒和打斗等异常行为识别)漏识率高、参数调整复杂,且难以高效地应用于现实城轨车站监控场景,针对此问题,采用基于骨架模式识别的人体姿态特征辨识框架,引入基于人体骨架的姿... 城市轨道交通领域传统监控分析方法对视频监控图像(如摔倒、晕倒和打斗等异常行为识别)漏识率高、参数调整复杂,且难以高效地应用于现实城轨车站监控场景,针对此问题,采用基于骨架模式识别的人体姿态特征辨识框架,引入基于人体骨架的姿态估计技术,采用Alpha Pose模型对乘客姿态进行精确估计,并结合时空图卷积网络(spatial temporal graph convolutional networks,ST-GCN)模型的方法,实现对城轨车站监控场景中异常行为的辨识。在COCO数据集和MPII数据集上分别达到了72.3 mAP和82.1 mAP的效果,相比较于Open Pose模型提升高达17%,验证了模型的有效性和实用性。结果表明,本文所提出的方法不仅提高了乘客行为的识别速度,同时具备对复杂场景的适应能力,为城轨安全监控提供一种新的技术方案。 展开更多
关键词 轨道交通 骨架识别 模式识别 城轨车站安全 乘客行为特征辨识 ST-GCN
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部