期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集成GCN-Transformer网络的ENSO预测模型
被引量:
3
1
作者
杜先君
李河
《海洋学报》
CAS
CSCD
北大核心
2023年第12期156-165,共10页
厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是热带太平洋海表面温度发生异常的现象,会导致冰雹、洪水、台风等极端天气的出现,因此对ENSO的准确预测意义重大。本文设计了集成GCN-Transformer(GCNTR)模型,首先运用Tran...
厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是热带太平洋海表面温度发生异常的现象,会导致冰雹、洪水、台风等极端天气的出现,因此对ENSO的准确预测意义重大。本文设计了集成GCN-Transformer(GCNTR)模型,首先运用Transformer网络的全局特征聚焦能力对数据特征进行编码,然后结合GCN提取图数据特征的能力,最后引入特征融合门控机制将经过编码的特征和GCN提取的特征进行融合,实现ENSO的精确预测。结果表明,GCNTR模型实现了对ENSO提前20个月的预测,比ENSOTR多了3个月,比Transformer多了5个月,并且模型绝大部分的预测精度优于其他模型。与现有的方法相比,GCNTR模型能够实现对ENSO更好的预测。
展开更多
关键词
厄尔尼诺-南方涛动
图卷积神经网络
TRANSFORMER
gcntr
在线阅读
下载PDF
职称材料
题名
基于集成GCN-Transformer网络的ENSO预测模型
被引量:
3
1
作者
杜先君
李河
机构
兰州理工大学电气工程与信息工程学院
出处
《海洋学报》
CAS
CSCD
北大核心
2023年第12期156-165,共10页
基金
国家自然科学基金项目(62241307)
甘肃省科技计划项目(22YF7FA166)
+1 种基金
兰州市科技计划项目(2022-RC-60)
甘肃省教育厅高等学校创新基金项目(2021A-027)。
文摘
厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是热带太平洋海表面温度发生异常的现象,会导致冰雹、洪水、台风等极端天气的出现,因此对ENSO的准确预测意义重大。本文设计了集成GCN-Transformer(GCNTR)模型,首先运用Transformer网络的全局特征聚焦能力对数据特征进行编码,然后结合GCN提取图数据特征的能力,最后引入特征融合门控机制将经过编码的特征和GCN提取的特征进行融合,实现ENSO的精确预测。结果表明,GCNTR模型实现了对ENSO提前20个月的预测,比ENSOTR多了3个月,比Transformer多了5个月,并且模型绝大部分的预测精度优于其他模型。与现有的方法相比,GCNTR模型能够实现对ENSO更好的预测。
关键词
厄尔尼诺-南方涛动
图卷积神经网络
TRANSFORMER
gcntr
Keywords
El Niño-Southern Oscillation(ENSO)
graph
convolutional
network(GCN)
Transformer
graph
convolutional
network-transformer
(
gcntr
)
分类号
P732.4 [天文地球—海洋科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集成GCN-Transformer网络的ENSO预测模型
杜先君
李河
《海洋学报》
CAS
CSCD
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部