Amorphous and crystalline poly (chloro-p-xytylene) (PPX C) membranes are constructed by using a novel com- putational technique, that is, a combined method of NVT+NPT-molecular dynamics (MD) and gradually reduc...Amorphous and crystalline poly (chloro-p-xytylene) (PPX C) membranes are constructed by using a novel com- putational technique, that is, a combined method of NVT+NPT-molecular dynamics (MD) and gradually reducing the size (GRS) methods. The related free volumes are defined as homology clusters. Then the sorption and the permeation of gases in PPX C polymers are studied using grand canonical Monte Carlo (GCMC) and NVT-MD methods. The results show that the crystalline PPX C membranes provide smaller free volumes for absorbing or transferring gases relative to the amorphous PPX C area. The gas sorption in PPX C membranes mainly belongs to the physical one, and H bonds can appear obviously in the amorphous area. By cluster analyzing on the mean square displacement of gases, we find that gases walk along the x axis in the crystalline area and walk randomly in the amorphous area. The calculated permeability coefficients are close to the experimental data.展开更多
Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum ad...Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.展开更多
The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combinat...The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combination of a high-throughput screening method and grand canonical Monte Carlo simulation was utilized to evaluate and screen 1725 metal–organic frameworks(MOFs)in detail as a means of determining their adsorption performance for CO_(2)/H_(2)gas mixtures.The adsorption and separation performance of double-linker MOFs was comprehensively evaluated using eight evaluation indicators,namely,the largest cavity diameter,accessible surface area,pore occupied accessible volume,porosity,adsorption selectivity,working capacity,adsorbent performance score and percent regeneration.Six optimal performance frameworks were screened to further study their single-component adsorption and binary competitive adsorption of CO_(2)/H_(2)respectively.The CO_(2)adsorption selectivity at different CO_(2)/H_(2)feed ratios was also evaluated,which indicated their excellent adsorption and separation performance.The microscopic adsorption mechanisms for CO_(2)and H_(2)at the molecular level were investigated by analyzing the radial distribution function and density distribution.This study may provide directional guidance and reference for subsequent experiments on the adsorption and separation of CO_(2)/H_(2).展开更多
基金Project supported by the National Natural Science Foundation (Grant No. 11011120241 and 11076002)the China Academy of Engineering Physics "Double Hundred Talents Project" Candidates Optional Subjects (Grant Nos. 2008Rc01 and ZX03010)the China Academy of Engineering Physics Science and Technology Development Fund (Grant No. 2010A0302012)
文摘Amorphous and crystalline poly (chloro-p-xytylene) (PPX C) membranes are constructed by using a novel com- putational technique, that is, a combined method of NVT+NPT-molecular dynamics (MD) and gradually reducing the size (GRS) methods. The related free volumes are defined as homology clusters. Then the sorption and the permeation of gases in PPX C polymers are studied using grand canonical Monte Carlo (GCMC) and NVT-MD methods. The results show that the crystalline PPX C membranes provide smaller free volumes for absorbing or transferring gases relative to the amorphous PPX C area. The gas sorption in PPX C membranes mainly belongs to the physical one, and H bonds can appear obviously in the amorphous area. By cluster analyzing on the mean square displacement of gases, we find that gases walk along the x axis in the crystalline area and walk randomly in the amorphous area. The calculated permeability coefficients are close to the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904175,11804169,and 11804165)the Graduate Innovation Project of Jiangsu Province,China(Grant No.KYCX210700)。
文摘Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304079,11404094,and 11504088)Science and Technology Research Project of Henan Science and Technology Department(Grant No.182102410076)。
文摘The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combination of a high-throughput screening method and grand canonical Monte Carlo simulation was utilized to evaluate and screen 1725 metal–organic frameworks(MOFs)in detail as a means of determining their adsorption performance for CO_(2)/H_(2)gas mixtures.The adsorption and separation performance of double-linker MOFs was comprehensively evaluated using eight evaluation indicators,namely,the largest cavity diameter,accessible surface area,pore occupied accessible volume,porosity,adsorption selectivity,working capacity,adsorbent performance score and percent regeneration.Six optimal performance frameworks were screened to further study their single-component adsorption and binary competitive adsorption of CO_(2)/H_(2)respectively.The CO_(2)adsorption selectivity at different CO_(2)/H_(2)feed ratios was also evaluated,which indicated their excellent adsorption and separation performance.The microscopic adsorption mechanisms for CO_(2)and H_(2)at the molecular level were investigated by analyzing the radial distribution function and density distribution.This study may provide directional guidance and reference for subsequent experiments on the adsorption and separation of CO_(2)/H_(2).