Fine-grained 01420 Al-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization.The thermo-mechanically processed sheets were observed ...Fine-grained 01420 Al-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization.The thermo-mechanically processed sheets were observed to contain layers of different microstructures along the thickness.The precipitate behavior of the second phase particles and their effects on the distribution of dislocations and layered recrystallized grain structure were analyzed by optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffractometry(XRD).The formation mechanism of the gradient particles was discussed.The results show that after aging,a gradient distribution of large particles along the thickness is observed,the particles in the surface layer(SL) are distributed homogeneously,whereas those in the center layer(CL) are mainly distributed parallel to the rolling direction,and the volume fraction of the particles in the SL is higher than that in the CL.Subsequent rolling in the presence of layer-distributed particles results in a corresponding homogeneous distribution of highly strained regions in the SL and a banded distribution of them in CL,which is the main reason for the formation of layered grain structure along the thickness in the sheets.展开更多
The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) m...The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.展开更多
2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diff...2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and microhardness tester were adopted to investigate the microstructural and mechanical characteristics of the FSW joint. The results indicate that an ultrafine grained microstructure with the mean grain size of-0.7 Ixm is obtained in the weld nugget by using water cooling. However, The FSW joint exhibits softening compared with the ultrafine grained based material and the heat affected zone (HAZ) has the lowest hardness owing to the coarsening of the strengthening precipitates.展开更多
基金Project(2006DFA53250) supported by the International Science and Technology Cooperation Program of ChinaProject(2005CB623706) supported by the Major State Basic Research Development Program of China
文摘Fine-grained 01420 Al-Li alloy sheets were produced by thermo-mechanical processing based on the mechanism of particle stimulated nucleation of recrystallization.The thermo-mechanically processed sheets were observed to contain layers of different microstructures along the thickness.The precipitate behavior of the second phase particles and their effects on the distribution of dislocations and layered recrystallized grain structure were analyzed by optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and X-ray diffractometry(XRD).The formation mechanism of the gradient particles was discussed.The results show that after aging,a gradient distribution of large particles along the thickness is observed,the particles in the surface layer(SL) are distributed homogeneously,whereas those in the center layer(CL) are mainly distributed parallel to the rolling direction,and the volume fraction of the particles in the SL is higher than that in the CL.Subsequent rolling in the presence of layer-distributed particles results in a corresponding homogeneous distribution of highly strained regions in the SL and a banded distribution of them in CL,which is the main reason for the formation of layered grain structure along the thickness in the sheets.
基金Project(08BZ1130100) supported by the Science and Technology Committee of Shanghai,ChinaProject(SHUCX102251) supported by the Innovation Fund for Graduate Student of Shanghai University,China
文摘The influence of casting parameters on stray grain formation of a unidirectionally solidified superalloy IN738LC casting with three platforms was investigated by using a 3D cellular automaton-finite element (CAFE) model in CALCOSOFT package. The model was first validated by comparison of the reported grain structure of AI-7%Si (mass fraction) alloy. Then, the influence of pouring temperature, heat flux of the lateral surface, convection heat coefficient of the cooled chill and mean undercooling of the bulk nucleation on the stray grain formation was studied during the unidirectional solidification. The predictions show that the stray grain formation is obviously sensitive to the pouring temperature, heat flux and mean undercooling of the bulk nucleation. However, increasing the heat convection coefficient has little influence on the stray grain formation.
基金Projects(50774059, 51074119) supported by the National Natural Science Foundation of China
文摘2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and microhardness tester were adopted to investigate the microstructural and mechanical characteristics of the FSW joint. The results indicate that an ultrafine grained microstructure with the mean grain size of-0.7 Ixm is obtained in the weld nugget by using water cooling. However, The FSW joint exhibits softening compared with the ultrafine grained based material and the heat affected zone (HAZ) has the lowest hardness owing to the coarsening of the strengthening precipitates.