期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design 被引量:1
1
作者 Shuibin Tu Xin Ai +8 位作者 Xiancheng Wang Siwei Gui Zhao Cai Renming Zhan Yuchen Tan Weiwei Liu Hui Yang Chenhui Li Yongming Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期477-484,I0010,共9页
Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform a... Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs. 展开更多
关键词 Sn foil anode 3D interconnected porous structure grain refinement Uniform alloying/dealloying reaction Chemo-mechanical failure
在线阅读 下载PDF
Non-layer-transformed Mn_(3)O_(4) cathode unlocks optimal aqueous magnesium-ion storage via synergizing amorphous ion channels and grain refinement 被引量:1
2
作者 Zhongyu Pan Tingting Qin +5 位作者 Wei Zhang Xianyu Chu Taowen Dong Nailin Yue Zizhun Wang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期42-48,共7页
Aqueous rechargeable magnesium ion batteries(ARMBs) have obtained more attention due to the twoelectrons transfer nature, low cost and safety. However, the scarcity of cathode materials seriously hinders the developme... Aqueous rechargeable magnesium ion batteries(ARMBs) have obtained more attention due to the twoelectrons transfer nature, low cost and safety. However, the scarcity of cathode materials seriously hinders the development of ARMBs because of the unfavorable strong interaction between Mg^(2+) and cathode material. Herein, we choose a pre-treated spinel Mn_(3)O_(4) cathode for aqueous Mg^(2+) storage. The pretreatment in Na_(2)SO_(4) solution induces the grain refinement decorated with tortuous amorphous ion diffusion channels, facilitating the production of electrochemical reaction active sites and the diffusion of Mg^(2+), respectively, which achieve a(sub-)surface pseudocapacitance reaction between Mn(Ⅱ) and Mn(Ⅲ). As a result, the pre-treated Mn_(3)O_(4) cathode exhibits a package of optimal performances, i.e., a capacity of 98.9 m Ah g^(-1) and a high capacity retention rate of 99.4% after 2000 cycles. To the best of our knowledge, our work not only provides a new reaction mechanism of spinelMn_(3)O_(4) in aqueous batteries system,but also affords a high cycle stability electrode material for rechargeable Mg^(2+) energy storage. 展开更多
关键词 SPINEL MN3O4 grain refinement AMORPHOUS ARMBs
在线阅读 下载PDF
Fine-grained NdFeB magnets prepared by low temperature pre-sintering and subsequent hot pressing
3
作者 剧锦云 唐旭 +4 位作者 陈仁杰 汪金芝 尹文宗 李东 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期493-497,共5页
Fine-grained Nd10.79Pr2.8Al0.4B7.72Fe78.29 magnets were prepared by low temperature pre-sintering and subsequent hot pressing. The grain size of the magnets is just about 1–3 μm because the low sintering temperature... Fine-grained Nd10.79Pr2.8Al0.4B7.72Fe78.29 magnets were prepared by low temperature pre-sintering and subsequent hot pressing. The grain size of the magnets is just about 1–3 μm because the low sintering temperature results in no grain growth. The orientation degree, microstructure, and magnetic properties were studied. Some grains' easy axes deviate from the orientation direction, possibly due to grain rotation during the hot pressing. By subsequent annealing, the magnetic properties were significantly enhanced. Especially, the squareness of the demagnetization curve was improved greatly.The enhancement of coercivity by annealing can be explained by an improvement of both grain boundaries and magnetic isolation, which decouples the exchange interaction between neighboring grains. 展开更多
关键词 Nd Fe B magnets grain refinement hot press PRE-SINTERING
在线阅读 下载PDF
Study on temper embrittlement control technique in steel 12Cr1MoV 被引量:4
4
作者 LI Qing-fen CHEN Hong-bin +1 位作者 LONG Ping CUI Xiu-fang 《Journal of Marine Science and Application》 2006年第1期44-47,共4页
Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue b... Failure may occur catastrophically by fracture along grain boundaries when temper embrittlement induced by non-equilibrium grain-boundary segregation (NGS) of phosphorus atoms. Temper embrittlement control technigue based on the theory of NGS and deformation induced phase transformation method was studied in this paper. Grain refinement technique by deformation induced phase transformation in low-alloy steel,12Cr1MoV( which is used in steam pipeline of ships),was experimentally investigated. A single-pass hot rolling process by using a Gleeble-1500 system was performed and the experimental results showed that the grain sizes were obviously affected by the deforming temperature,strain,strain rate and the quenching cooling rate. Temper embrittlement may be controlled and obviously improved by grain refinement. 展开更多
关键词 temper embrittlement grain refinement technique deformation induced phase transformation
在线阅读 下载PDF
Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy_(80)Ga_(20) intergranular addition 被引量:3
5
作者 周贝贝 李向斌 +2 位作者 曹学静 严高林 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期511-515,共5页
To investigate the coercivity,corrosion resistance,and thermal stability of Nd-Fe-B magnets,their properties were investigated at room and high temperature before and after doping with Dy(80)Ga(20)(at.%) powder.... To investigate the coercivity,corrosion resistance,and thermal stability of Nd-Fe-B magnets,their properties were investigated at room and high temperature before and after doping with Dy(80)Ga(20)(at.%) powder.The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe.A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy(80)Ga(20) powder.The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains,continuous grain boundaries,and a hardened(Nd,Dy)2Fe(14)B shell surrounding the matrix grains.Additionally,the doped magnets exhibit an obvious improvement in thermal stability.For the magnets with added Dy(80)Ga(20) powder,the temperature coefficients of remanence(α) and coercivity(β) increased to-0.106%℃-(-1) and-0.60%℃-(-1) over the range 20-100 ℃,compared to temperature coefficients of-0.117%℃-(-1)(α) and-0.74%℃-(-1)(β) in the regular magnets without Dy(80)Ga(20) powder.The irreversible loss of magnetic flux(Hirr) was investigated at different temperatures.After being exposed to 150 ℃ for 2 h,the Hirr of magnets with 4 wt.%Dy(80)Ga(20) decreased by -95%compared to that of the undoped magnets.The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets.The intergranular addition of Dy(80)Ga(20) also improved the corrosion resistance of the magnets because of the enhanced intergranular phase.In a corrosive atmosphere for 96 h,the mass loss of the sintered magnets with 4 wt.%Dy(80)Ga(20) was 2.68 mg/cm-2,less than 10%of that suffered by the undoped magnets(28.1 mg/cm-2). 展开更多
关键词 coercivity sintered doping hardened grains refined suffered sharply starting anisotropy
在线阅读 下载PDF
Size-refinement enhanced flexibility and electrochemical performance of MXene electrodes for flexible waterproof supercapacitors
6
作者 Jinkun Sun Yingjian Liu +11 位作者 Jiayi Huang Jiatian Li Mengmeng Chen Xiaoyu Hu Yatao Liu Run Wang Yanan Shen Jingjing Li Xuecheng Chen Dong Qian Baigang An Zunfeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期594-603,I0014,共11页
Increasing mechanical flexibility without sacrificing electrochemical performance of the electrode material is highly desired in the design of flexible electrochemical energy storage devices.In metal-related materials... Increasing mechanical flexibility without sacrificing electrochemical performance of the electrode material is highly desired in the design of flexible electrochemical energy storage devices.In metal-related materials science,decreasing the grain size introduces more grain boundaries;this stops dislocations and crack propagation under deformation,and results in increased strength and toughness.However,such a size refinement effect has not been considered in the mechanical properties,particle stacking,wetting,and electrochemical performances of flexible supercapacitor electrodes.In this paper,MXene was used as an electrode material to study the size refinement effect of flexible supercapacitors.Size refinement improved the strength and toughness of the MXene electrodes,and this resulted in increased flexibility.Finite elemental analysis provided a theoretical understanding of size refinement-increased flexibility.Moreover,the size refinement also improved the specific surface area,electric conductance,ion transportation,and water wetting properties of the electrode,and the size refinement provided highly increased energy density and power density of the MXene supercapacitors.A highly flexible,water-proof supercapacitor was fabricated using size-refined MXene.The current study provides a new viewpoint for designing tough and flexible energy storage electrodes.The size refinement effect may also be applicable for metal ion batteries and electronic and photo devices composed of MXene and other nanoparticles. 展开更多
关键词 grain refinement Flexible supercapacitor Size grading MXene
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部