One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, i...One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature.展开更多
Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the in...Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.展开更多
文摘One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature.
基金National Natural Science Foundation of China(62071147)。
文摘Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method.