The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and e...The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.展开更多
By applying phase-only technique in array antenna pattern synthesis, antenna arrays can form desired patterns with the use of phase shifters only. A novel phase-only pattern synthesis algorithm is proposed for the pas...By applying phase-only technique in array antenna pattern synthesis, antenna arrays can form desired patterns with the use of phase shifters only. A novel phase-only pattern synthesis algorithm is proposed for the passive phased array seeker. This algorithm synthesizes the main beam of the antenna pattern through least-squares approximation, thus minimizing the errors between the actual and the desired main beams. The synthesis problem can be solved by applying gradient-descent optimization. The item for suppressing side lobes is added to the above synthesis problem. To obtain a side lobe level as low as possible, the algorithm assigns different weights to different directions in the side lobe region. The algorithm is run repeatedly and the weights are adjusted adaptively according to the normalized power in the side lobe directions. Detailed examples are presented to demonstrate the accuracy and effectiveness of the proposed approach.展开更多
交替方向乘子法(Alternating Direction Method of Multiplier,ADMM)因具有线性规划(Linear Programming,LP)译码条件约束的几何结构,同时利用了消息传递机制,被认为是一种第5代移动通信技术(5th Generation Mobile Communication Techn...交替方向乘子法(Alternating Direction Method of Multiplier,ADMM)因具有线性规划(Linear Programming,LP)译码条件约束的几何结构,同时利用了消息传递机制,被认为是一种第5代移动通信技术(5th Generation Mobile Communication Technology,5G)低密度校验(Low Density Parity Check,LDPC)码新型优化译码算法。通过在LP译码模型的目标函数中引入惩罚项,基于ADMM的变量节点惩罚译码有效地减轻了非积分解,从而提高了误帧率(Frame Error Rate,FER)性能。尽管ADMM在许多实际应用中表现出色,其收敛速度较慢以及对初始条件和参数设置敏感的问题仍然限制了其在高维、实时性要求高的场景中的进一步应用。特别是在LDPC线性规划译码过程中,ADMM的交替更新机制容易导致优化路径振荡,且在处理非精确约束时表现不佳。针对ADMM算法收敛速度慢的问题,我们提出了一种新的优化算法,该算法将Nesterov动量加速方法与ADMM相结合,以解决ADMM对LDPC译码器错误修正能力和收敛效率的影响。算法通过动量项减少迭代次数将一个Nesterov加速格式从无约束复合优化问题推广到ADMM惩罚函数模型,利用ADMM算法将原问题的约束条件有效转化为目标函数的一部分,从而构造出无约束优化子问题;在此基础上,进一步采用Nesterov加速技术对梯度下降迭代过程进行改进,以提高收敛速度和求解精度。仿真实验使用了三种不同码率的5G LDPC短码。结果表明,相对于现有ADMM惩罚译码算法,所提出的基于动量加速的ADMM译码算法不仅有大约0.2 dB的信噪比增益,而且平均迭代次数也降低了20%左右,加快了收敛速度。展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
基金This project was supported by State Science &Technology Pursuing Project (2001BA204B01) of China and Foundation forUniversity Key Teacher by the Ministry of Education of China.
文摘The distribution of sampling data influences completeness of rule base so that extrapolating missing rules is very difficult. Based on data mining, a self-learning method is developed for identifying fuzzy model and extrapolating missing rules, by means of confidence measure and the improved gradient descent method. The proposed approach can not only identify fuzzy model, update its parameters and determine optimal output fuzzy sets simultaneously, but also resolve the uncontrollable problem led by the regions that data do not cover. The simulation results show the effectiveness and accuracy of the proposed approach with the classical truck backer-upper control problem verifying.
基金supported by the National Natural Science Foundation of China(1127301761471196)
文摘By applying phase-only technique in array antenna pattern synthesis, antenna arrays can form desired patterns with the use of phase shifters only. A novel phase-only pattern synthesis algorithm is proposed for the passive phased array seeker. This algorithm synthesizes the main beam of the antenna pattern through least-squares approximation, thus minimizing the errors between the actual and the desired main beams. The synthesis problem can be solved by applying gradient-descent optimization. The item for suppressing side lobes is added to the above synthesis problem. To obtain a side lobe level as low as possible, the algorithm assigns different weights to different directions in the side lobe region. The algorithm is run repeatedly and the weights are adjusted adaptively according to the normalized power in the side lobe directions. Detailed examples are presented to demonstrate the accuracy and effectiveness of the proposed approach.
文摘交替方向乘子法(Alternating Direction Method of Multiplier,ADMM)因具有线性规划(Linear Programming,LP)译码条件约束的几何结构,同时利用了消息传递机制,被认为是一种第5代移动通信技术(5th Generation Mobile Communication Technology,5G)低密度校验(Low Density Parity Check,LDPC)码新型优化译码算法。通过在LP译码模型的目标函数中引入惩罚项,基于ADMM的变量节点惩罚译码有效地减轻了非积分解,从而提高了误帧率(Frame Error Rate,FER)性能。尽管ADMM在许多实际应用中表现出色,其收敛速度较慢以及对初始条件和参数设置敏感的问题仍然限制了其在高维、实时性要求高的场景中的进一步应用。特别是在LDPC线性规划译码过程中,ADMM的交替更新机制容易导致优化路径振荡,且在处理非精确约束时表现不佳。针对ADMM算法收敛速度慢的问题,我们提出了一种新的优化算法,该算法将Nesterov动量加速方法与ADMM相结合,以解决ADMM对LDPC译码器错误修正能力和收敛效率的影响。算法通过动量项减少迭代次数将一个Nesterov加速格式从无约束复合优化问题推广到ADMM惩罚函数模型,利用ADMM算法将原问题的约束条件有效转化为目标函数的一部分,从而构造出无约束优化子问题;在此基础上,进一步采用Nesterov加速技术对梯度下降迭代过程进行改进,以提高收敛速度和求解精度。仿真实验使用了三种不同码率的5G LDPC短码。结果表明,相对于现有ADMM惩罚译码算法,所提出的基于动量加速的ADMM译码算法不仅有大约0.2 dB的信噪比增益,而且平均迭代次数也降低了20%左右,加快了收敛速度。
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.