期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:9
1
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(gbdt) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
在线阅读 下载PDF
基于TrAdaBoost-GBDT模型的排土场边坡稳定状态判别 被引量:1
2
作者 江松 李涛 +3 位作者 李锦源 李研博 张存良 张立杰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第11期89-98,共10页
针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,... 针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,并采集和处理试验中边坡模型的含水率、土压力和孔隙水压力数据;考虑到小样本数据集对梯度提升回归树(GBDT)模型分类精度的影响,运用迁移学习思想,利用迁移自适应增强算法(TrAdaBoost)对源域数据集和目标域数据集样本权重进行迭代更新,以GBDT模型作为数据样本训练的弱学习器,最终根据弱学习器的分类结果,通过加权多数表决法生成一种基于迁移学习的TrAdaBoost-GBDT排土场边坡稳定状性判别模型,以提高小样本数据标签类别的判别准确率。结果表明:相对其他算法模型,提出的排土场边坡稳定状态判别模型在稳定状态判别上有更好的表现,准确率、精准率、召回率和曲线下面积值(AUC)分别达到93.3%、87.5%、100%和93.8%,能够作为边坡稳定状态判别的分类器。该模型相对其他算法模型可以提高小样本数据集的边坡稳定状态判别的准确性,弥补机器学习对小样本数据集分类结果精度较低的不足。 展开更多
关键词 排土场边坡 稳定状态判别 迁移自适应增强梯度提升回归树(TrAdaBoost-gbdt) 迁移学习 小样本
在线阅读 下载PDF
基于GBDT算法的弓网动态匹配特性预测模型 被引量:2
3
作者 黄桂灶 马同鑫 +3 位作者 杨泽锋 李政 魏文赋 吴广宁 《振动与冲击》 EI CSCD 北大核心 2024年第16期26-32,50,共8页
高速铁路通过弓网系统的滑动电接触获取电能驱动列车运行,弓网动态匹配特性是保障良好滑动电接触的基础。首先,建立了弓网动态匹配的有限元分析模型,并通过与文献结果对比验证了模型的正确性。采用拉丁超立方抽样方法,对接触网的关键结... 高速铁路通过弓网系统的滑动电接触获取电能驱动列车运行,弓网动态匹配特性是保障良好滑动电接触的基础。首先,建立了弓网动态匹配的有限元分析模型,并通过与文献结果对比验证了模型的正确性。采用拉丁超立方抽样方法,对接触网的关键结构参数和运行速度参数进行样本抽样,获得输入参数集;然后,利用有限元模型对输入参数集开展大量计算分析并进行结果的特征提取,获得弓网动态匹配关键特征参量的输出结果,结合输入和输出结果,构成了样本数据集;最后,采用梯度提升决策树(gradient lifting decision tree, GBDT)算法对数据集进行学习训练和验证测试,建立弓网动态匹配特性预测模型,并将其与基于决策树、随机森林、极端随机树和极端梯度提升树算法的4个模型进行对比分析。结果表明,基于GBDT算法的模型预测精度更高、稳定性更好,在测试集上的R~2达到了0.929,能够准确快速地评估弓网匹配特性。通过对GBDT模型进行参数重要性分析可知,运行速度对弓网匹配特性的影响程度最大,达61%,其次是接触线的张力、承力索张力和档距。该研究初步探索了采用机器学习方法建立预测模型来替代有限元模型的可能性,所建立的模型可用于弓网动态匹配特性的快速预测与评价。 展开更多
关键词 弓网系统 动态特性 机器学习 梯度提升决策树(gbdt) 受流质量
在线阅读 下载PDF
基于GBDT的气液两相流相分布测量模型 被引量:2
4
作者 曾思睿 孔明 《化工进展》 EI CAS CSCD 北大核心 2024年第2期800-807,共8页
双波长透射法是一种高精度的多相流相分布参数检测方法,为了进一步提高相分布测量的精度,本文提出用梯度提升决策树(GBDT)算法建立相分布测量模型。利用光学仿真,模拟气泡在不同相分布下波长为445nm和635nm的光线在气液两相流中的传播过... 双波长透射法是一种高精度的多相流相分布参数检测方法,为了进一步提高相分布测量的精度,本文提出用梯度提升决策树(GBDT)算法建立相分布测量模型。利用光学仿真,模拟气泡在不同相分布下波长为445nm和635nm的光线在气液两相流中的传播过程,采集检测平面的光强分布,分析不同相分布情况下气泡中心位置和气泡半径对光强分布曲线的影响;用GBDT建立测量模型,以光强缺失宽度和缺失偏移为特征参数,建立特征参数与气泡相分布之间的对应数据库,利用数据库对GBDT模型进行训练;用训练好的模型预测气泡的相分布。建立的测量模型对气泡相分布预测的均方误差小于0.0008mm,均方误差减小了33.33%,证明了测量模型更适用于相分布的测量。搭建了实验平台,对竖直上升气泡流相分布参数进行预测,实现了对气泡中心位置运动轨迹的追踪。 展开更多
关键词 气液两相流 气泡 上升管 相分布 梯度提升决策树
在线阅读 下载PDF
基于减碳效益的共享单车骑行网络社区识别与影响因素分析
5
作者 马书红 朱敏 +2 位作者 杨磊 段超杰 董治宇 《北京交通大学学报》 北大核心 2025年第1期180-190,共11页
为探究社区识别与共享单车减碳效益之间的关系,对西安市减碳效益社区识别和相关影响因素进行研究.首先,基于2020年西安市哈啰单车订单数据分析其出行时空分布特征;其次,测算共享单车骑行减碳效益并分析其时间特征;再次,利用Louvain算法... 为探究社区识别与共享单车减碳效益之间的关系,对西安市减碳效益社区识别和相关影响因素进行研究.首先,基于2020年西安市哈啰单车订单数据分析其出行时空分布特征;其次,测算共享单车骑行减碳效益并分析其时间特征;再次,利用Louvain算法根据减碳效益对西安市中心城区进行社区识别;最后,使用K-means聚类算法对社区进行分类并运用梯度提升决策树(Gradient Boosting Decision Tree,GBDT)模型探究建成环境对共享单车减碳效益的影响.研究结果表明:共享单车出行具有明显的早晚高峰现象,骑行热点集中于地铁沿线及接驳站点等;共享单车减碳效益显著,并有早晚高峰效应;基于减碳效益共识别出16个社区,活动社区与行政区划重合较少,社区呈现“低耦合、高内聚”的结构特征,城市中心划分的社区数量较多,规模较小,外围区域社区数量较少,规模较大,中心社区具有更为明显的减碳效益;基于社区的加权平均度、图密度和平均聚集系数,可将16个社区划分为低减碳区、中减碳区、高减碳区3类;不同建成环境因素对减碳效益均具有正向影响,但影响尺度不同.研究方法可为西安市共享单车减碳排管理和政策制定提供参考. 展开更多
关键词 城市交通 减碳效益 建成环境 社区识别 梯度提升决策树
在线阅读 下载PDF
面向雕刻任务的机器人技能学习应用研究
6
作者 占宏 黎志毅 杨辰光 《机械设计与制造》 北大核心 2025年第1期272-275,共4页
缺乏自主作业能力是制约机器人在工业制造领域大规模应用的主要因素之一。机器人通过学习操作技能,可有效加强自主作业能力,进一步提升智能化水平。针对雕刻任务,提出了一种机器人技能学习方法以实现高效作业。该方法首先对任意轨迹进... 缺乏自主作业能力是制约机器人在工业制造领域大规模应用的主要因素之一。机器人通过学习操作技能,可有效加强自主作业能力,进一步提升智能化水平。针对雕刻任务,提出了一种机器人技能学习方法以实现高效作业。该方法首先对任意轨迹进行分割和特征提取,利用梯度提升决策树多分类方法进行轨迹分类,并基于改进型动态运动原语模型的技能学习方法生成待雕刻字样轨迹。同时,在所搭建的机器人雕刻实验平台,采用艾力特机械臂完成了雕刻英文任务,实验结果表明雕刻效果良好,实现了机器人雕刻技能学习。该方法效率高,能够适应不同任务需求,在工业制造领域有着广阔应用前景。 展开更多
关键词 机器人 雕刻任务 技能学习 动态运动原语 梯度提升决策树
在线阅读 下载PDF
基于HighD数据集的高速公路小客车换道风险分析 被引量:1
7
作者 刘通 杨波 +3 位作者 杨雪琦 刘唐志 刘星良 吴攀 《深圳大学学报(理工版)》 北大核心 2025年第1期94-104,共11页
为探究高速公路小客车微观换道行为特性及换道风险,基于HighD数据集提取自车换道轨迹及周围车辆行驶数据,分析目标车道存在前、后车时的自车换道行为规律.以高速公路小客车换道冲突特性为基础,提取换道风险表征指标,建立基于停车距离系... 为探究高速公路小客车微观换道行为特性及换道风险,基于HighD数据集提取自车换道轨迹及周围车辆行驶数据,分析目标车道存在前、后车时的自车换道行为规律.以高速公路小客车换道冲突特性为基础,提取换道风险表征指标,建立基于停车距离系数的事故风险率和基于速度差的事故严重度模型,使用故障树分析法计算换道风险指数,对换道安全性进行评价,并基于k-means聚类算法将换道风险划分为4个等级;建立基于梯度提升决策树框架的换道风险预测模型,使用不同特征组合对小客车驾驶员换道风险进行预测及验证.结果表明,选取速度-加速度混合特征的换道风险预测模型预测效果最佳.研究结论可为理解高速公路小客车换道行为特性、驾驶行为模式识别以及驾驶辅助系统参数设置提供参考. 展开更多
关键词 交通工程 换道轨迹 换道风险 故障树分析 K-MEANS聚类 梯度提升决策树
在线阅读 下载PDF
基于改进Smote-GBDT算法的岩爆预测模型 被引量:6
8
作者 宋英华 江晨 +1 位作者 李墨潇 齐石 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期25-32,共8页
为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))... 为准确预测岩爆等级,确保施工人员和设备安全,首先,从岩爆机制、数据和算法角度,分析埋深(D)、单轴抗压强度(UCS)、单轴抗拉强度(UTS)、岩石脆性指数(B_(1)、B_(2))、围岩最大切向应力(MTS)、应力集中系数(SCF)和弹性变形能指数(W_(et))8个指标,建立岩爆预测指标体系;其次,针对岩爆样本存在的数据不均衡问题,引进托梅克联系(Tomek Link)对欠采样方法,改进合成少数类过采样(Smote)算法,对岩爆训练样本进行混合过采样;最后,构建SmoteTomek-梯度提升树(GBDT)岩爆预测模型,以38组数据验证模型的有效性,并与其他模型进行对比。结果表明:SmoteTomek-GBDT的准确率为92.1%,较未采样提升5.3%,Smote采样提升10.5%,优于随机过采样模型,并且避免跨等级的岩爆误判。 展开更多
关键词 岩爆预测 梯度提升树(gbdt)算法 合成少数类过采样(Smote)算法 岩爆指标 托梅克联系(Tomek Link)
在线阅读 下载PDF
基于GBDT-LR和信息量模型耦合的滑坡易发性评价 被引量:9
9
作者 董张玉 张晋 +3 位作者 彭鹏 王燕 杨智 安森 《水土保持通报》 CSCD 北大核心 2023年第1期149-157,166,共10页
[目的]探索准确、快速的滑坡易发性区划方法,为区域安全监测提供参考,为政府治理滑坡灾害提供科学依据。[方法]以安徽省池州市贵池区为研究区域,采用梯度提升决策树—逻辑回归(GBDT-LR)和信息量(I)模型耦合的方法,实现区域滑坡易发性评... [目的]探索准确、快速的滑坡易发性区划方法,为区域安全监测提供参考,为政府治理滑坡灾害提供科学依据。[方法]以安徽省池州市贵池区为研究区域,采用梯度提升决策树—逻辑回归(GBDT-LR)和信息量(I)模型耦合的方法,实现区域滑坡易发性评价。该方法通过对原样本地学习,组合产生新的模拟样本,从而增强易发性评价模型对滑坡的拟合能力;采用Borderline-Smote算法解决样本数据不对称的问题。选用r.slopeunits软件划分的斜坡单元作为最小评价单元,选取坡度、坡向、地形曲率、剖面曲率、平面曲率、地形湿度指数(TWI)、地形起伏度、归一化植被指数(NDVI)、距断裂距离和距水系距离总计10个评价因子。分别从频率比、滑坡灾害点及隐患点密度、ROC曲线3个方面对构建的滑坡易发性模型进行评价。[结果]试验结果表明:耦合模型I-GBDT-LR分别比I,LR,I-LR模型的高易发区频率比所占比例提升约10%,13%,7%,高易发区滑坡灾害点及隐患点密度分别提升约9,11,7,ROC精度提升约10%,9%,5%。[结论]从检验指标综合来看,耦合模型的精度均高于单一模型,所提出耦合模型精度又高于I-LR耦合模型,为滑坡易发性评价提供了一种有效的、新型的评价方法。 展开更多
关键词 滑坡易发性 信息量 逻辑回归 gbdt-LR 安徽省池州市
在线阅读 下载PDF
基于GBDT算法的参考作物蒸散量模型在江苏省的预测 被引量:14
10
作者 张薇 韦群 +3 位作者 吴天傲 林洁 邵光成 丁鸣鸣 《江苏农业学报》 CSCD 北大核心 2020年第5期1169-1180,共12页
选取江苏省6个气象站点1997-2016年的逐日气象资料,建立了3种基于树型算法的参考作物蒸散量(ET 0)预测模型,包括梯度提升决策树(Gradient boosting decision tree,GBDT)、随机森林(Random forest,RF)和回归树(Regression tree)模型,以FA... 选取江苏省6个气象站点1997-2016年的逐日气象资料,建立了3种基于树型算法的参考作物蒸散量(ET 0)预测模型,包括梯度提升决策树(Gradient boosting decision tree,GBDT)、随机森林(Random forest,RF)和回归树(Regression tree)模型,以FAO-56 Penman-Monteith公式计算所得的ET 0值作为标准值,对GBDT、RF、Regresssion tree模型和3种经验模型(EI-Sebail、Irmak、Hargreaves-Samani模型)的预测结果进行比较分析。结果表明:在相同气象因子输入组合下,GBDT、RF模型能取得较高的模拟精度,且明显高于Regression tree模型和经验模型,其中,气象参数组合为最高气温、最低气温和辐射的GBDT模型具有最高的模拟精度[全局评价指标(GPI)排名第1];通过敏感性分析发现,辐射是对江苏省逐日ET 0影响最为显著的气象因子,其直接通径系数为0.512,对决定系数(R 2)的贡献度为0.740,显著高于其他气象因子;通过可移植性分析发现,气象因子组合为最高气温、最低气温和辐射的GBDT、RF模型在江苏省内6个站点相互交叉验证下仍具有较高的预测精度。因此,可以将GBDT、RF模型应用于江苏省气象资料缺乏时的ET 0预测,为农业灌溉提供可靠依据。 展开更多
关键词 参考作物蒸散量 梯度提升决策树(gbdt)算法 随机森林(RF)算法 可移植性分析 敏感性分析
在线阅读 下载PDF
黄河流域城市空间形态对居民生活能耗碳排放的非线性驱动机制
11
作者 岳文慧 张丽君 +2 位作者 秦耀辰 王玉香 刘秀芳 《生态学报》 北大核心 2025年第14期7052-7064,共13页
可持续的城市形态是城市低碳转型的关键,然而城市形态对居民生活能耗碳排放的作用机制尚存争议,这一定程度上限制了规划层面应对低碳转型的潜力。因此,利用长时序遥感影像与统计数据,采用梯度提升决策树模型,以黄河流域为例,探讨城市空... 可持续的城市形态是城市低碳转型的关键,然而城市形态对居民生活能耗碳排放的作用机制尚存争议,这一定程度上限制了规划层面应对低碳转型的潜力。因此,利用长时序遥感影像与统计数据,采用梯度提升决策树模型,以黄河流域为例,探讨城市空间形态对居民用电、用气、供暖、交通和直接碳排放的异质性影响和非线性作用机制。结果发现:(1)城市建成区面积扩张导致不同类型居民生活能耗碳排放增加,但最大斑块占比在4%以内扩张时导致居民直接、用电和供暖碳排放先减排后增排,用气和交通碳排放呈波动变化。(2)城市建成区周长面积比在7—10左右使不同类型居民生活能耗碳排放均达到最低,面积加权平均形状因子在7以内增大,城市形态更为复杂,导致居民直接、用电、供暖和交通碳排放增加,用气碳排放先增加后减少。(3)城市紧凑度超过96%时,居民直接碳排放持续增加,用气碳排放经历先降低后增加的变化,用电、供暖及交通碳排放则相反。研究结果有助于从城市空间规划的角度为城市可持续发展和居民低碳生活方式转型提供政策启示。 展开更多
关键词 城市空间形态 居民生活能耗碳排放 梯度提升决策树 生活方式 黄河流域
在线阅读 下载PDF
职住地建成环境与电动自行车通勤的非线性影响——基于社会分异的视角
12
作者 邱宁 杨传峥 +2 位作者 韩欣宇 姜宇逍 张志伟 《西部人居环境学刊》 北大核心 2025年第3期94-102,共9页
随着城市通勤压力上升,电动自行车因其灵活性强、适用范围广,逐渐成为居民日常通勤及接驳换乘工具。本文以济南市中心城区为研究区域,基于2019年居民出行调查数据,运用梯度提升决策树(GBDT)模型,从居住地与就业地双重视角出发,系统分析... 随着城市通勤压力上升,电动自行车因其灵活性强、适用范围广,逐渐成为居民日常通勤及接驳换乘工具。本文以济南市中心城区为研究区域,基于2019年居民出行调查数据,运用梯度提升决策树(GBDT)模型,从居住地与就业地双重视角出发,系统分析建成环境因素对电动自行车选择概率的非线性关系及阈值效应。研究发现:第一,通勤距离是影响选择概率的关键变量,呈倒U型关系,在2300m处达到峰值(55%);第二,适度的功能复合、高连通性、适度绿地配比的空间布局更有利于促进电动自行车通勤出行;第三,收入水平对出行行为影响显著,低收入群体选择概率最高(63.9%),高收入群体最低(19.5%);第四,不同收入群体对环境要素敏感性存在差异:低收入群体主要受到居住地建成环境的影响,中等收入群体则受到职住两地的双重影响,而高收入群体更敏感于就业地的建成环境。研究结果能为优化中短距离通勤空间结构,推动城市交通系统绿色、高效与包容转型提供参考。 展开更多
关键词 电动自行车 建成环境 通勤选择概率 社会分异 梯度提升决策树
在线阅读 下载PDF
基于GBDT的实时洪水预报误差校正方法 被引量:7
13
作者 姚超宇 钟平安 +3 位作者 徐斌 王凯 高益辉 李昆朋 《水电能源科学》 北大核心 2019年第8期38-42,共5页
洪水预报实时校正是提高预报精度的有效途径。通过研究实时洪水预报误差系列构建方法,引入GBDT方法建立误差校正模型,并采用粒子群算法优选模型参数,选用洪峰段洪量相对误差、洪峰流量相对误差、确定性系数等指标评估实时校正效果。对... 洪水预报实时校正是提高预报精度的有效途径。通过研究实时洪水预报误差系列构建方法,引入GBDT方法建立误差校正模型,并采用粒子群算法优选模型参数,选用洪峰段洪量相对误差、洪峰流量相对误差、确定性系数等指标评估实时校正效果。对淮河流域王家坝站点的实例应用结果表明,无论是率定期还是验证期,基于GBDT的实时预报误差校正方法精度均优于经典AR方法和KNN方法,各项指标精度均有不同程度提升,可有效提高实时洪水预报效果,且稳定性较高。 展开更多
关键词 洪水预报误差 实时校正 gbdt 梯度提升 决策树
在线阅读 下载PDF
基于GBDT的沥青路面抗滑性能感知模型研究 被引量:4
14
作者 战友 邓强胜 +3 位作者 罗志伟 刘成 张傲南 邱延峻 《土木工程学报》 EI CSCD 北大核心 2023年第2期121-132,共12页
为了克服接触式路面抗滑性能测试方法适用范围局限、稳定性与可重复性较差的缺陷,文章通过非接触式三维激光扫描技术建立沥青路面抗滑性能梯度提升决策树(GBDT)感知模型。研究选取巴通万高速公路上的12个测试站点,收集了216组原始数据,... 为了克服接触式路面抗滑性能测试方法适用范围局限、稳定性与可重复性较差的缺陷,文章通过非接触式三维激光扫描技术建立沥青路面抗滑性能梯度提升决策树(GBDT)感知模型。研究选取巴通万高速公路上的12个测试站点,收集了216组原始数据,对路面三维纹理数据进行面积分层,并提取宏微观纹理指标。然后将不同面积占比下的宏微观纹理特征指标、测试温度及摩擦系数BPN分别代入模型中,并与决策树、随机森林、线性回归三个模型进行对比分析。研究表明,以40%为最佳切割面,GBDT路面抗滑性能感知模型准确度更高、稳定性更好,测试集R2达到0.8732,能够准确有效地评估沥青路面抗滑性能。GBDT感知模型参数重要性分析结果显示:温度对沥青路面抗滑性能具有显著性影响,针对不同的评价指标,其宏微观纹理特性对路面抗滑性能的影响差异性较大。研究验证通过非接触式路面纹理测试替代现有的接触式路面摩擦测试的可能性,所建立的指标体系和模型以期推动路面抗滑性能测试技术的进步。 展开更多
关键词 道路工程 抗滑性能感知模型 梯度提升决策树(gbdt) 宏微观纹理
在线阅读 下载PDF
基于GBDT算法的柴油机性能预测 被引量:5
15
作者 陈天锴 王贵勇 +1 位作者 申立中 姚国仲 《车用发动机》 北大核心 2022年第5期51-58,共8页
柴油机作为一种多输入多输出的高复杂度与耦合度系统,难以用精确的物理与化学模型准确描述。通过空间填充设计采集训练数据集,采用GBDT(Gradient Boosting Decision Tree,梯度提升决策树)算法构建了柴油机有效燃油消耗率(BSFC)、NO_(x)... 柴油机作为一种多输入多输出的高复杂度与耦合度系统,难以用精确的物理与化学模型准确描述。通过空间填充设计采集训练数据集,采用GBDT(Gradient Boosting Decision Tree,梯度提升决策树)算法构建了柴油机有效燃油消耗率(BSFC)、NO_(x)和CO预测模型,并对模型进行了验证。结果表明:预测模型收敛速度较快;BSFC,NO_(x),CO拟合程度R^(2)分别为0.981,0.993,0.992;预测值平均相对误差为0.81%,3.68%,2.95%;模型生成的BSFC,NO_(x),CO响应与真实柴油机趋势具有一致性;预测模型有较高的精确度和稳定性。梯度提升决策树算法对柴油机建模有较高的适应度,能够有效解决多特征高维非线性柴油机系统问题,为柴油机性能预测建模提供了一种行之有效的方法。 展开更多
关键词 柴油机 性能预测 数学模型 梯度提升决策树 空间填充设计
在线阅读 下载PDF
基于模糊Bagging-GBDT的短期负荷预测模型研究 被引量:23
16
作者 毕云帆 撖奥洋 +1 位作者 张智晟 孙文慧 《电力系统及其自动化学报》 CSCD 北大核心 2019年第7期51-56,共6页
为了提高常规梯度提升决策树GBDT算法的泛化性能,并实现并行计算,在GBDT的基础上,利用隶属度函数对气象数据进行模糊处理,同时引入Bagging算法,通过Bootstrap方式对原始数据进行多次抽样形成新的训练样本,分别训练模糊GBDT负荷预测子模... 为了提高常规梯度提升决策树GBDT算法的泛化性能,并实现并行计算,在GBDT的基础上,利用隶属度函数对气象数据进行模糊处理,同时引入Bagging算法,通过Bootstrap方式对原始数据进行多次抽样形成新的训练样本,分别训练模糊GBDT负荷预测子模型,提出了基于模糊Bagging-GBDT的短期负荷预测模型。算例分析结果表明,本文提出的预测模型相较于BP-NN和常规GBDT预测模型,7日平均绝对误差分别降低了1.44%和0.22%,模型具有良好的预测精度和稳定性。 展开更多
关键词 gbdt BAGGING 模糊理论 短期负荷预测 电力系统
在线阅读 下载PDF
基于GBDT的轨道不平顺状态评价模型研究 被引量:8
17
作者 张煜 杨飞 +2 位作者 尤明熙 李国龙 龙亦语 《铁道建筑》 北大核心 2020年第8期111-114,共4页
基于轨道几何动态检测数据和车载式线路检查仪(晃车仪)数据,通过随机森林模型分析轨道几何特征与水平、垂直晃车相关性,并结合车辆动态响应利用迭代决策树(Gradient Boosting Decision Tree,GBDT)算法建立轨道不平顺状态评价模型,利用... 基于轨道几何动态检测数据和车载式线路检查仪(晃车仪)数据,通过随机森林模型分析轨道几何特征与水平、垂直晃车相关性,并结合车辆动态响应利用迭代决策树(Gradient Boosting Decision Tree,GBDT)算法建立轨道不平顺状态评价模型,利用该模型对一客运专线实测轨道几何数据和晃车仪数据进行数据训练和预测。结果表明,模型能够识别超出现有幅值评判标准对车辆运行有显著影响的轨道病害区段,有益于完善轨道几何不平顺评价体系及工务设备养护维修。 展开更多
关键词 轨道几何 车辆响应 迭代决策树(gbdt) 预测模型 随机森林模型
在线阅读 下载PDF
高铁枢纽与城市轨道交通换乘流线仿真与优化 被引量:4
18
作者 程龙 宁哲 +2 位作者 薛小钰 张霁扬 刘志鹏 《北京交通大学学报》 CAS CSCD 北大核心 2024年第4期43-52,共10页
针对高铁枢纽与城市轨道交通换乘流线优化问题,以南京南站作为研究对象,建立全过程仿真模型,识别换乘瓶颈,采用梯度提升决策树法(Gradient Boosting Decision Tree,GBDT)确定参数重要度,提出改善方案.首先,分解换乘过程的行人与设施流线... 针对高铁枢纽与城市轨道交通换乘流线优化问题,以南京南站作为研究对象,建立全过程仿真模型,识别换乘瓶颈,采用梯度提升决策树法(Gradient Boosting Decision Tree,GBDT)确定参数重要度,提出改善方案.首先,分解换乘过程的行人与设施流线,分析高速铁路到达客流与城市轨道交通客流的分布特征.其次,使用AnyLogic软件建立高铁枢纽换乘城市轨道交通的全过程仿真模型,分析现状仿真结果,识别空间瓶颈.然后,设计不同优化类型下的措施参数及调整范围,形成不同参数组合方案.采取梯度提升决策树算法,识别不同措施参数的相对重要度,并据此确定改善措施的优先级.最后,依据措施的优先级,确定不同类型下的优化组合方案,选择机器学习全局可解释性方法对其进行优化效果分析,为不同场景下的服务改善提出建议.研究结果表明:换乘瓶颈主要集中于楼/扶梯通道设施以及闸机、售检票机等服务设施处;乘客换乘城轨的购票比例对平均换乘时间和单位时间最大换乘人数均起到重要影响,对于平均换乘时间,城轨自动售票机数量、购票时间、城轨进站服务时间、城轨进站闸机数量的影响相对较大,对于单位时间最大换乘人数,购票时间与城轨进站闸机服务时间的影响相对较大.为提高高铁枢纽换乘效率,建议推广电子客票和多种支付方式,优化购票及检票设施. 展开更多
关键词 综合交通系统 交通枢纽 换乘全过程优化 AnyLogic仿真 梯度提升决策树
在线阅读 下载PDF
基于机器学习的火山岩识别方法及应用 被引量:1
19
作者 朱博含 单玄龙 +5 位作者 衣健 石云倩 郭剑南 刘鹏程 王舒扬 李昂 《特种油气藏》 CAS CSCD 北大核心 2024年第5期41-49,共9页
针对松辽盆地南部查干花地区火石岭组火山岩岩性复杂多变,基于常规测井的二维交会、逐级分类等传统方法难以准确地识别火山岩岩性的问题,提出了利用机器学习算法对火山岩岩性进行智能识别的思路。通过岩心观察、薄片鉴定等手段,明确取... 针对松辽盆地南部查干花地区火石岭组火山岩岩性复杂多变,基于常规测井的二维交会、逐级分类等传统方法难以准确地识别火山岩岩性的问题,提出了利用机器学习算法对火山岩岩性进行智能识别的思路。通过岩心观察、薄片鉴定等手段,明确取心段火山岩岩性。将取心段测井数据集分为训练集和测试集,利用训练集拟合目标函数,将测试集代入模型计算得到预测结果,并利用集成学习融合模型进行盲井预测。该融合模型通过各测井曲线特征建立定量的数学关系,融合了多种机器学习的特点,基于精确的岩性数据集标签使模型学习效率更强。研究表明:该融合模型对盲井的预测准确率达到95.10%,模型泛化能力强,能够对研究区火山岩岩性进行准确地识别与预测。该研究可为火山岩油气勘探提供智能化支持。 展开更多
关键词 火山岩 岩性 机器学习 集成学习 gbdt梯度增益树 松辽盆地
在线阅读 下载PDF
管理层讨论与分析能预示企业违约吗?——基于中国股市的实证分析 被引量:4
20
作者 沈隆 周颖 《系统管理学报》 CSSCI CSCD 北大核心 2024年第2期441-459,共19页
采用文本挖掘技术,对上市公司年报中的管理层讨论与分析(MD&A)内容进行文本分析,从文本相似度、文本可读性、文本语调以及管理层预期的角度构建了MD&A评价体系。通过构建代价敏感GBDT(csGBDT)模型,考察多维管理层讨论与分析指... 采用文本挖掘技术,对上市公司年报中的管理层讨论与分析(MD&A)内容进行文本分析,从文本相似度、文本可读性、文本语调以及管理层预期的角度构建了MD&A评价体系。通过构建代价敏感GBDT(csGBDT)模型,考察多维管理层讨论与分析指标对企业违约预测的影响,并进一步分析了对企业违约状态有重要影响的MD&A指标及其对违约状态作用的边际效应。研究表明:MD&A指标可以作为替代性数据源准确预测上市公司违约状态;MD&A指标相比传统违约预测变量的预测效果较差;MD&A指标在传统违约判别指标基础上提供了额外的信息含量;csGBDT模型显著提高了对企业(尤其是对违约企业)的判别能力,在违约预测的大数据方法中具有明显优势。在众多管理层讨论与分析指标中,对企业违约有重要影响的MD&A指标依次为:与前一年相比文本相似度、词汇总量、情感语调2、词汇总量/句子数量、情感语调1和管理层是否发出业绩预测。本文将企业违约预测的研究边界从结构化数据拓展到非结构化文本数据,有助于抑制信息不对称导致的企业违约风险。 展开更多
关键词 文本挖掘 管理层讨论与分析 违约预测 代价敏感gbdt 信息不对称
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部