期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
基于机器学习的Budyko框架流域时变特征参数估计
1
作者 薛联青 陈雨欣 +1 位作者 刘远洪 杨明杰 《水资源保护》 北大核心 2025年第4期10-18,41,共10页
为分析黄河中游Budyko框架流域特征参数的时空变化,并捕捉不同因素对流域特征参数的影响,基于黄河中游8个子流域的径流、气象和人类活动数据,分区构建多元线性回归(MLR)、梯度提升(GB)和随机森林(RF)模型,对傅抱璞方程中的流域特征参数... 为分析黄河中游Budyko框架流域特征参数的时空变化,并捕捉不同因素对流域特征参数的影响,基于黄河中游8个子流域的径流、气象和人类活动数据,分区构建多元线性回归(MLR)、梯度提升(GB)和随机森林(RF)模型,对傅抱璞方程中的流域特征参数ω进行模拟。通过交叉验证选择表现最优的模型,识别对ω影响显著的主要控制因素,并进一步将最优模型纳入水热耦合平衡方程,构建时变Budyko框架,量化气候变化和下垫面变化对径流的贡献率。结果表明:3种模型中,RF模型在模拟ω时优于MLR和GB模型;1980—2019年各子流域ω值均呈增大趋势,ω主要受不透水面面积、人口和地区生产总值等人类活动因素的控制,在气候因素中潜在蒸散发是重要的控制因素;下垫面变化是黄河中游大多数子流域径流变化的主要驱动因素,然而气候变化对沁河子流域的影响略强于下垫面变化。 展开更多
关键词 Budyko框架 流域特征参数 多元线性回归模型 梯度提升模型 随机森林模型 黄河中游
在线阅读 下载PDF
基于级联的航班地面保障动态预测
2
作者 唐小卫 丁叶 +3 位作者 吴政隆 张生润 吴佳琦 叶梦凡 《北京航空航天大学学报》 北大核心 2025年第5期1557-1565,共9页
对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测... 对航班地面保障过程进行精准预测是实现航班精细化管理、提升机场协同决策(A-CDM)系统管理效能的关键。为此,提出一种基于级联多输出梯度提升回归树模型的航班地面保障多节点动态预测方法。通过搭建级联框架实现了不同保障进度之间预测信息的传递和预测结果的更新,基于可进行多节点预测的梯度提升回归树设计了地面保障过程动态预测算法,以典型繁忙机场为对象构建了航班基础属性与层级信息传递两大类特征集。结果表明:所提方法有效实现了地面保障各关键节点完成时间的动态预测,初始预测各节点±5 min预测精度均达到80%以上,随着保障过程推进模型预测性能逐步提升,超过60%的节点±5 min最终预测精度超过95%,为提升航班运行的可预测性和机场多主体协同决策能力提供有效方法支撑。 展开更多
关键词 航空运输 航班地面保障 机场协同决策 级联 梯度提升回归树 动态预测
在线阅读 下载PDF
基于梯度提升回归树的三江源地区植被指数的预测方法研究
3
作者 张国晶 颜青松 +3 位作者 秦文强 张兹予 李希来 黄建强 《草地学报》 北大核心 2025年第5期1655-1668,共14页
为了揭示三江源地区2000—2023年植被时空变化格局及影响因素,并预测气候变化条件下三江源地区植被可能的变化趋势,本研究基于三江源达日、玛多、玉树、曲麻莱四个地区2000—2023年归一化植被指数(Normalized difference vegetation ind... 为了揭示三江源地区2000—2023年植被时空变化格局及影响因素,并预测气候变化条件下三江源地区植被可能的变化趋势,本研究基于三江源达日、玛多、玉树、曲麻莱四个地区2000—2023年归一化植被指数(Normalized difference vegetation index,NDVI)数据,以及温度、降水、风速和气压等气候数据进行分析。研究采用了梯度提升回归树、自适应增强回归、随机森林以及神经网络等机器学习算法建立NDVI预测模型。在此基础上,对所有模型参数进行了精细调优和验证,以提升模型性能和可靠性。最终,筛选出了模拟精度最优模型,进行多情景下植被变化模拟。研究结果表明,温度对NDVI的气象特征值占比最高,达0.6486。梯度提升回归模型在所有研究区综合表现优于其他模型,平均均方误差(Mean squared error,MSE)在0.00045~0.00104之间,拟合系数(Coefficient of determination,R^(2))均超过0.90,显示出强大的拟合能力。梯度提升回归树在预测三江源地区NDVI方面具有较高的准确性和稳定性,并对NDVI数据具有良好拟合效果,为三江源地区NDVI预测提供了科学方法。研究结果有助于预警气候变化条件下植被退化的潜能,为气候变化背景下该区域植被生态保护提供科学依据。 展开更多
关键词 NDVI 机器学习 梯度提升回归树 三江源地区
在线阅读 下载PDF
融合XGBoost和逻辑回归算法的电信客户流失预测模型
4
作者 吕宁 罗倩 《现代电子技术》 北大核心 2025年第11期136-143,共8页
为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实... 为应对大规模、高维度且分布不均衡的企业数据环境下客户流失预测难题,文中提出一种融合极端梯度提升树与逻辑回归(XG-LR)的集成学习算法。该方法利用XGBoost算法构建决策树集成,将样本在树结构中的叶节点映射为新特征并输入LR模型,实现树模型非线性特征提取能力与LR模型解释性优势的有效结合。实验结果表明,在Teclo电信流失数据集上,XG-LR算法的预测精确率达到94.55%,较传统统计学习方法有显著提升。该模型可为企业客户关系管理提供高精度的流失预警工具,支持数据驱动的客户价值评估与营销策略优化。 展开更多
关键词 客户流失预测 统计学习模型 极端梯度提升树 逻辑回归 特征转换 数据平衡 特征提取
在线阅读 下载PDF
基于XGboost和线性回归的军队体系建设“成本-能力”组合优化模型
5
作者 张玉婷 杨镜宇 《系统工程与电子技术》 北大核心 2025年第2期486-495,共10页
不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归... 不确定性条件下的体系能力评估和优化是提升军事体系建设效能的重要方式和手段。着眼军队体系建设中多种“成本-能力”方案优选问题,借鉴投资组合优化理论,采用极端梯度提升(eXtreme gradient boosting, XGboost)二分类模型、线性回归、三点估计等方法,构建“成本-能力”组合优化模型,汇总多个评估标准,得出备选方案的经济价值和对备选方案不确定性的敏感程度,综合分析,得到最优备选方案,并将模型应用于体系建设案例中进行验证,研究成果为“成本-能力”组合备选方案评估优选提供理论依据及实践方法。 展开更多
关键词 组合优化 XGboost二分类 线性回归 三点估计 体系能力
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:2
6
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2FNN) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
进港航班滑入时间预测 被引量:3
7
作者 唐小卫 丁叶 +2 位作者 张生润 任思豫 吴佳琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2218-2224,共7页
准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑... 准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑入时间的影响因素并构建特征集;将线性回归、K-最近邻、支持向量机、决策树、随机森林和梯度提升回归树6种在滑出时间预测方面得到广泛应用的机器学习模型用于进港航班滑入时间预测。研究结果表明:在误差范围±3 min内6种机器学习模型的预测精度均超过90%,表明特征集的构建和模型的选择是有效的;综合预测性能与模型拟合评估结果,梯度提升回归树模型的预测效果最好;在梯度提升回归树模型上场面流量特征的贡献度最大,新引入的跨区特征对预测模型的贡献度超过了大部分传统特征。 展开更多
关键词 航空运输 机场场面运行 滑行时间预测 机器学习 梯度提升回归树
在线阅读 下载PDF
土地利用与城市轨道交通客流的非线性关系 被引量:2
8
作者 魏丽英 石晶晶 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期43-51,共9页
城市轨道交通站点影响范围内土地利用对客流影响具有时空分异特征且存在类型差异,为针对性探讨不同站点两者的复杂非线性关系,提出一种基于土地利用空间分布规律、对站点实际影响范围进行差异化识别的方法;并通过分时段多尺度地理加权回... 城市轨道交通站点影响范围内土地利用对客流影响具有时空分异特征且存在类型差异,为针对性探讨不同站点两者的复杂非线性关系,提出一种基于土地利用空间分布规律、对站点实际影响范围进行差异化识别的方法;并通过分时段多尺度地理加权回归,获取能够表征土地利用对客流影响时空变化特征的站点聚类指标,采用K-means++算法将研究区域内的站点划分为4类;进而基于改进的梯度提升决策树模型分类定量探讨不同类别下土地利用与轨道交通客流的复杂非线性关系。研究表明:通过捕捉不同站点土地利用与客流的时空分异特征对站点进行分类识别,可有效提升两者非线性关系模型的解释度。根据模型输出结果,发现不同类别站点影响轨道交通客流的关键土地利用要素不同,第1类中关键变量为相对重要性分别为61.35%和30.08%的公交站点数量和慢行密度;第4类的情况类似但相对数值有所变化,公交站点数量的相对重要性由61.35%下降至30.31%;建筑密度在第2类中以66.57%的相对重要度占据最大比例;但在第3类中仅占5.59%。此外,不同类别站点影响范围内土地利用与轨道交通客流的关系存在较为显著且各异的阈值效应。研究表明,对于不同类别站点的用地开发应各有侧重,且应结合实际将土地利用设计指标控制在相应的合理范围内。研究为差异化的站点周边土地利用开发策略的制定提供了理论支持和量化指导。 展开更多
关键词 多尺度地理加权回归 土地利用 空间差异性 阈值效应 梯度提升决策树 轨道交通客流
在线阅读 下载PDF
基于机器学习的方形截面高层建筑干扰风压预测 被引量:3
9
作者 胡松雁 谢壮宁 杨易 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1425-1437,共13页
为了预测干扰作用下方形截面高层建筑风荷载,进行了576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能... 为了预测干扰作用下方形截面高层建筑风荷载,进行了576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能有效预测受扰建筑风荷载,且预测平均风荷载性能优于预测极值风荷载;GBRT模型在预测风荷载方面表现最佳,该模型预测极小值和平均风荷载得到的R^(2)分别为0.9940和0.9997;经过超参数优化的GBRT模型,不论是内插还是外推,均能展现良好的预测性能;对比显示在迎风面及两侧面上预测风压分布较好,在背风面预测效果相对较弱.GBRT模型可为预测干扰作用下高层建筑风荷载提供一种经济有效的、可以部分替代传统风洞试验和数值模拟的机器学习方法. 展开更多
关键词 高层建筑 干扰效应 风压系数 机器学习 梯度提升回归树
在线阅读 下载PDF
基于变换域分析和XGBoost算法的超短期风电功率预测模型 被引量:3
10
作者 王永生 李海龙 +3 位作者 关世杰 温彩凤 许志伟 高静 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3860-3870,共11页
为应对传统超短期风电功率预测方法在数据潜在关系挖掘和模型收敛速度等方面存在的问题,提出了一种基于变换域分析和极端梯度提升回归树算法(extreme gradient boosting, XGBoost)的超短期风电功率预测方法。首先,通过时间滑动窗口和风... 为应对传统超短期风电功率预测方法在数据潜在关系挖掘和模型收敛速度等方面存在的问题,提出了一种基于变换域分析和极端梯度提升回归树算法(extreme gradient boosting, XGBoost)的超短期风电功率预测方法。首先,通过时间滑动窗口和风电功率指标进行数据构建和低级特征提取。然后,结合快速傅里叶变换(fastFourier transform, FFT)和哈尔小波变换构成的多层次变换域分析方法对风电数据进行分解,充分考虑频域信息在特征学习中的重要性。最后,建立包含FFT、哈尔小波变换和XGBoost算法组合的超短期风电功率预测模型。实验结果表明,采用的多层次变换域分析方法能够充分挖掘原始特征之间的潜在关系,深入捕捉数据的时序关联性,而且XGBoost算法可以有效提升模型的预测性能,与其他预测模型相比,所提方法在不同数据集上均展现出较高的预测精度和较强的特征提取能力。 展开更多
关键词 风电功率预测 傅里叶变换 小波变换 时间滑动窗口 风电功率指标 梯度提升回归树
在线阅读 下载PDF
基于集成学习的交通事故严重程度预测研究与应用 被引量:12
11
作者 单永航 张希 +2 位作者 胡川 丁涛军 姚远 《计算机工程》 CAS CSCD 北大核心 2024年第2期33-42,共10页
目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模... 目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模型。基于真实交通事故数据集NASS-CDS完成训练,模型输入为车辆传感器可感知得到的事故相关特征,输出为车内乘员最高受伤级别。在第1层中,通过实验对不同学习器组合进行训练,最终综合考虑预测性能以及耗时挑选K近邻、自适应提升树、极度梯度提升树作为基学习器;在第2层中,为降低过拟合,采用逻辑回归作为元学习器。实验结果表明,该方法准确率达到85.01%,在精确率、召回率和F1值方面优于其他个体模型和集成模型,该预测结果可作为智能车辆决策规划模块先验信息,帮助车辆做出正确的决策,减缓事故损害。最后阐述了模型在L_(2)辅助驾驶与L_(4)自动驾驶车辆中的应用,在常规车辆安全防护的基础上进一步提升车辆的安全性。 展开更多
关键词 交通安全 交通事故严重程度预测 智能车辆 集成学习 K近邻 自适应提升树 极度梯度提升树 逻辑回归
在线阅读 下载PDF
青藏高原草地地上生物量估算 被引量:8
12
作者 姚雨微 任鸿瑞 《生态学报》 CAS CSCD 北大核心 2024年第7期3049-3059,共11页
及时准确评估草地产草量对草地资源的科学管理和可持续发展具有重要意义。青藏高原自然环境特殊,气候差异显著,地形复杂,仅依靠遥感信息准确监测草地地上生物量(Aboveground Biomass,AGB)变化有较大限制。基于青藏高原草地AGB野外实测... 及时准确评估草地产草量对草地资源的科学管理和可持续发展具有重要意义。青藏高原自然环境特殊,气候差异显著,地形复杂,仅依靠遥感信息准确监测草地地上生物量(Aboveground Biomass,AGB)变化有较大限制。基于青藏高原草地AGB野外实测数据与Landsat遥感影像,探索了植被指数表征草地AGB信息的有效性,评估了气象和地形信息对准确估算草地AGB的影响,综合利用气象、地形和遥感信息,在新一代地球科学数据和分析应用平台(Google Earth Engine)上构建了梯度增强回归树草地AGB估算模型,绘制了青藏高原多年草地AGB空间分布图。结果表明:(1)基于单因素遥感因子的线性回归模型仅能解释8%—40%的草地AGB变化情况,其中绿色归一化植被指数(Green Normalized Difference Vegetation Index,GNDVI)对草地AGB解释能力较强(40%)。(2)基于遥感因子构建的梯度增强回归树模型测试集R~2为0.57。分别添加气象、地形信息,模型对草地AGB的估测准确性有所提升,测试R~2为0.62和0.63。(3)基于气象、地形和遥感因子的多因素估测模型能够提高草地AGB估测精度,经递归特征消除法优选后,基于13个特征变量的梯度增强回归树模型拟合效果最好(训练数据集R~2=0.79,RMSE=43.42 g/m^(2),P<0.01;测试数据集R~2=0.66,RMSE=53.64 g/m^(2),P<0.01),可以解释66%草地AGB变化情况。(4)2010年青藏高原平均AGB为94.58 g/m^(2),2015年93.63 g/m^(2),2020年100.78 g/m^(2)。青藏高原西北部草地AGB较低,东南部草地AGB较高,整体呈现自西北向东南逐渐增加的分布格局。研究结果为准确估算青藏高原草地产草量和碳储量等研究提供重要参考。 展开更多
关键词 青藏高原 草地地上生物量 梯度增强回归树 遥感
在线阅读 下载PDF
城市轨道交通非常态客流出行影响机制研究 被引量:3
13
作者 纪柯柯 杨青 +3 位作者 纪凯丽 张姝婷 林春旺 李正中 《铁道运输与经济》 北大核心 2024年第4期182-192,共11页
为探究异常天气情况下多维空间属性对轨道交通非常态客流出行机制的影响,基于梯度提升决策树模型,分析异常天气下天津市143个轨道交通站点的非常态客流出行特征,解析经济属性、交通便利性、建成环境等10个影响因子对非常态客流量的非线... 为探究异常天气情况下多维空间属性对轨道交通非常态客流出行机制的影响,基于梯度提升决策树模型,分析异常天气下天津市143个轨道交通站点的非常态客流出行特征,解析经济属性、交通便利性、建成环境等10个影响因子对非常态客流量的非线性影响机制。研究发现:①异常天气下,轨道交通站点日均客流显著增长。受天气状况的影响,97%的轨道交通站点日均客流呈增长趋势,其中天津站客流增长幅度最大,达到32%;②建成环境对城市轨道交通非常态客流的影响最为显著,达到86.44%,因子“到市中心距离”影响程度最大;③各影响因子与非常态客流之间具有明显的非线性关系与阈值效应,除公交站点数量、交叉口数量以及居住设施密度与非常态客流间呈波动“凸”形非线性关系外,其他影响因子整体保持非线性正相关或负相关。 展开更多
关键词 城市交通 建成环境 非常态客流 梯度提升决策树 非线性关系
在线阅读 下载PDF
一种基于分段线性回归树的轨迹索引 被引量:1
14
作者 武凡 韩京宇 +4 位作者 刘阳 李彩云 缪祝青 王彦之 毛毅 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2055-2062,共8页
处理多维数据查询时,为了减少存储消耗,采用学习型索引替代传统索引受到关注.轨迹点会在时间或者空间维度上的某些区间聚集,数据分布倾斜,从而扭曲学习模型预测精度,导致较高的磁盘访问次数.提出一种基于分段线性回归树的轨迹索引,以降... 处理多维数据查询时,为了减少存储消耗,采用学习型索引替代传统索引受到关注.轨迹点会在时间或者空间维度上的某些区间聚集,数据分布倾斜,从而扭曲学习模型预测精度,导致较高的磁盘访问次数.提出一种基于分段线性回归树的轨迹索引,以降低存储代价并减少磁盘访问次数,包括数据排序和模型训练两个阶段.在第一个阶段,沿着时间维度划分轨迹点以形成一系列时空子区域,在每个时空子区域根据映射函数对轨迹点进行空间维度的存储,从而确定轨迹点的全局序号.在第二个阶段,使用初始数据构建分段线性回归树作为预测模型,并基于该模型预测位置来存储未来数据.模拟和真实的数据集上的实验表明,该方法在保证查询性能优于学习型索引的前提下,存储消耗和构建时间大幅度降低. 展开更多
关键词 轨迹点 学习型索引 分段线性回归树 范围查询 点查询
在线阅读 下载PDF
低覆盖草地叶面积指数遥感估算方法 被引量:1
15
作者 张云峰 任鸿瑞 《草业科学》 CAS CSCD 北大核心 2024年第3期588-598,共11页
有效估算低覆盖草地叶面积指数(LAI),对监测低覆盖草地生长状况、优化完善草地管理具有重要意义。以往针对草地叶面积指数的研究大多集中于中高覆盖度草地,对低覆盖草地的研究相对较少。利用谷歌地球引擎(GEE),基于Landsat-8卫星数据提... 有效估算低覆盖草地叶面积指数(LAI),对监测低覆盖草地生长状况、优化完善草地管理具有重要意义。以往针对草地叶面积指数的研究大多集中于中高覆盖度草地,对低覆盖草地的研究相对较少。利用谷歌地球引擎(GEE),基于Landsat-8卫星数据提取所需特征变量,通过特征变量与叶面积指数的相关性及其在模型中的重要性进行特征优选,确定模型最佳变量个数,以此构建机器学习模型,探寻适合在低覆盖区草地估算叶面积指数的方法。结果显示,基于相关性特征优选的梯度提升回归树模型(r-GBRT)在低覆盖草地估算叶面积指数的效果较好,测试集的R 2为0.686,均方根误差(RMSE)为0.101。结果表明,基于特征优选构建的机器学习模型在低覆盖条件下估算草地叶面积指数方面具有较好的应用价值。 展开更多
关键词 叶面积指数 低覆盖草地 机器学习 特征优选 随机森林 梯度提升回归树 遥感
在线阅读 下载PDF
结合机器学习的SA湍流模型闭合系数修正
16
作者 徐向阳 胡冠男 +2 位作者 王良军 朱文浩 张武 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期341-351,共11页
将修正Morris分类筛选法与极端梯度提升(extreme gradient boosting,XGBoost)相结合,在计算流体动力学(computational fluid dynamics,CFD)数据驱动下,用于SA(Spalart-Allmaras)湍流模型闭合系数的修正.利用分类筛选法有效缩小闭合系数... 将修正Morris分类筛选法与极端梯度提升(extreme gradient boosting,XGBoost)相结合,在计算流体动力学(computational fluid dynamics,CFD)数据驱动下,用于SA(Spalart-Allmaras)湍流模型闭合系数的修正.利用分类筛选法有效缩小闭合系数研究范围,同时依据XGBoost方法在小规模数据集下取得精度较高的拟合模型,有效提升系数修正效率.在三维DLR-F6-WB构型下进行了数值实验,实验结果显示利用本方法能够在三维复杂模型上基于小样本数据进行系数修正,修正后的升阻力系数计算精度得到了显著提升. 展开更多
关键词 SA(Spalart-Allmaras)湍流模型 敏感度 极端梯度提升(extreme gradient boosting XGBoost) 线性回归 系数修正
在线阅读 下载PDF
内蒙古退耕还林工程区林冠覆盖率卫星遥感监测 被引量:2
17
作者 格根塔娜 王天璨 +2 位作者 王建和 沈通 月亮高可 《测绘通报》 CSCD 北大核心 2024年第6期139-145,共7页
内蒙古新一轮退耕还林还草工程于2015年启动,是内蒙古生态环境建设恢复的重大举措。本文利用2022年生长季Sentinel-2A影像及地形数据,结合实地测量数据,基于GEE平台采用梯度提升树回归模型(GBRT),对内蒙古新一轮退耕还林工程区林冠覆盖... 内蒙古新一轮退耕还林还草工程于2015年启动,是内蒙古生态环境建设恢复的重大举措。本文利用2022年生长季Sentinel-2A影像及地形数据,结合实地测量数据,基于GEE平台采用梯度提升树回归模型(GBRT),对内蒙古新一轮退耕还林工程区林冠覆盖率进行反演分析。结果表明,模型验证决定系数(R^(2))为0.87,均方根误差(RMSE)为0.079,平均绝对误差(MAE)为0.062。内蒙古新一轮退耕还林工程区林冠覆盖率均值为0.147,其分布存在明显的空间差异,受植被配置类型、种植年份和地理环境等因素影响,总体从西向东逐渐递增。利用Sentinel-2A影像和地形数据可以有效地估测退耕还林工程区林冠覆盖率,对低林冠覆盖率区域的反演提供参考。 展开更多
关键词 退耕还林 林冠覆盖率 梯度提升树 内蒙古
在线阅读 下载PDF
双参数Tweedie机器学习模型及其精算应用
18
作者 高雅倩 孟生旺 《统计研究》 CSSCI 北大核心 2024年第4期126-140,共15页
Tweedie回归是保险损失预测和风险定价的主要工具之一。为充分利用大数据、物联网、机器学习等技术促进保险业的数字化转型,实现更加精准的风险识别和风险定价,本文将传统的Tweedie广义线性模型推广到双参数形式,并结合机器学习算法,提... Tweedie回归是保险损失预测和风险定价的主要工具之一。为充分利用大数据、物联网、机器学习等技术促进保险业的数字化转型,实现更加精准的风险识别和风险定价,本文将传统的Tweedie广义线性模型推广到双参数形式,并结合机器学习算法,提出双参数Tweedie梯度提升树模型和双参数Tweedie组合神经网络模型。基于我国一家保险公司的车联网大数据,提取了新的驾驶行为风险因子。通过实证研究检验了双参数Tweedie梯度提升树和双参数Tweedie组合神经网络在风险识别以及风险定价中的有效性,为促进我国保险业数字化转型提供了一种新的模型和方法。 展开更多
关键词 Tweedie回归 双参数梯度提升树 双参数组合神经网络 驾驶行为因子
在线阅读 下载PDF
基于VIF-GBRT-MC模型的日径流预测 被引量:1
19
作者 张上要 宋雄 +2 位作者 顷宏利 龙章发 刘连燚 《中国农村水利水电》 北大核心 2024年第9期204-210,共7页
针对气象数据驱动模型在预测径流面临的特征间多重共线性及预测精度较低的问题,将方差膨胀因子VIF、梯度提升回归树GBRT模型和马尔科夫链MC误差修正模型相结合,建立VIF-GBRT-MC组合预测模型。选取汉江流域洋县水文站的日径流进行实例分... 针对气象数据驱动模型在预测径流面临的特征间多重共线性及预测精度较低的问题,将方差膨胀因子VIF、梯度提升回归树GBRT模型和马尔科夫链MC误差修正模型相结合,建立VIF-GBRT-MC组合预测模型。选取汉江流域洋县水文站的日径流进行实例分析,并与单一模型GBRT、长短期记忆神经网络LSTM、支持向量机SVM及相应组合模型VIF-GBRT、VIF-LSTM、VIF-SVM、VIF-LSTM-MC和VIF-SVM-MC的预测结果进行对比分析。采用纳什效率系数NSE、均方根误差归一化NRMSE、平均绝对百分比误差MAPE(%)、峰值预测性能评价指标PPTS(5)和合格率QR(%)对模型的预测结果进行评价。研究结果表明:①VIF能够有效选取对模型预测有利的特征,改善特征间的多重共线性问题,降低模型过拟合的风险,从而提高模型预测精度。②MC误差修正模型能够准确识别未来时刻径流的预测值可能所处的误差状态,并加以修正,进一步提高径流预测的准确性。③GBRT模型相比LSTM和SVM模型,它能够更好适应径流和气象因子的非线性特征,相比其他子模型有着更强的预测能力。将GBRT与VIF和MC模型组合构成VIF-GBRT-MC模型,能够有效降低径流非一致性的影响,显著提高径流的预测精度。研究项目为实际径流预测工作提供了有效的预测方法,并为应对气候变化和人类活动对径流预测带来的挑战提供了一种可行方案。 展开更多
关键词 径流预测 方差膨胀因子 梯度提升回归树 马尔科夫链
在线阅读 下载PDF
基于Google Earth Engine的前郭县春季农田覆膜提取
20
作者 邓韵谣 李晓洁 任建华 《地理科学》 CSSCI CSCD 北大核心 2024年第8期1417-1425,共9页
本文基于Google Earth Engine(GEE)云平台,综合考虑光学影像的波段反射率、光谱指数特征和雷达影像的极化、纹理特征,分别构建仅使用光学特征、仅使用雷达特征以及光学和雷达特征组合3种特征输入组合;根据精度确定最佳输入特征后,分别... 本文基于Google Earth Engine(GEE)云平台,综合考虑光学影像的波段反射率、光谱指数特征和雷达影像的极化、纹理特征,分别构建仅使用光学特征、仅使用雷达特征以及光学和雷达特征组合3种特征输入组合;根据精度确定最佳输入特征后,分别结合机器学习中的分类与回归树、支持向量机、最小距离分类法、梯度提升树和随机森林5种方法建立覆膜提取模型,依据结果精度评估不同方法的性能,并基于最优化模型提取出最终的覆膜农田面积。结果表明:①最佳输入特征为波段反射率特征+光谱指数特征+极化特征+纹理特征;②采用随机森林方法建立的模型精度最高,研究区I的总体精度达到了95.84%,Kappa系数为0.95,地物错分率为1.2%,明显优于其他4种方法(地物错分率较分类与回归树、支持向量机、最小距离和梯度提升树法降低0.8%、7.3%、38.0%和0.3%),研究区II的验证精度达到了87.84%,证明该模型在覆膜提取中可以取得更加准确的结果;③使用本文方法得到2022年研究区I覆膜农田面积为1302.48 km2,估算地膜使用量约为7585.62 t。本文综合考虑光学和雷达影像在地物识别中的特点建立模型,可以准确、高效的识别农田地膜,掌握地膜面积,对环境治理与防治具有重要意义。 展开更多
关键词 覆膜 Google Earth Engine 特征提取 随机森林 支持向量机 分类与回归树 最小距离 梯度提升树
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部