Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issue...Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’d...In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.展开更多
The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have ...The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
为了系统评价参芪扶正注射液联合常规治疗作为干预措施对慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者的临床疗效和安全性。检索中国国家知识基础设施(China national knowledge infrastructure,CNKI)、PubMed、...为了系统评价参芪扶正注射液联合常规治疗作为干预措施对慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者的临床疗效和安全性。检索中国国家知识基础设施(China national knowledge infrastructure,CNKI)、PubMed、万方数据知识服务平台(Wanfang Data)、维普中文科技期刊数据库(Weipu China science and technology journal database,VIP)等数据库,筛选并纳入2023年6月18日以前发表的参芪扶正注射液联合常规疗法治疗COPD患者的随机对照试验(randomized controlled trials,RCT),采用Cochrane风险评价工具及评估、发展和评价建议分级(grading of recommendations assessment,development and evaluation,GRADE)系统进行文献证据质量评价,用RevMan 5.4软件对临床疗效及安全性指标进行Meta分析。结果表明,共纳入16项RCTs,1 486例患者。Meta分析结果显示,参芪扶正注射液辅助治疗可提高患者总有效率和第1秒用力呼气容积/用力肺活量比值(forced expiratory volume in one second/forced vital capacity,FEV1/FVC)指标,与对照组相比具有优势(P<0.000 01、P<0.000 1);不良反应少,无严重不良反应(adverse drug reactions,ADR),两组对比无统计学差异(P=0.32);GRADE评价结果显示,有效率及不良反应指标的证据质量均为中等级,肺功能为低等级。可见参芪扶正注射辅助治疗COPD可以提高患者临床疗效,改善肺功能,且具有良好的安全性。但所纳入研究具有局限性,证据质量不高,仍需结合中药辨证使用特点,规范实验方案,开展更多的高质量RCT研究。展开更多
目的运用循证医学方法对腕踝针干预术后疼痛的疗效和安全性进行系统评价和Grade评价。方法计算机检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Embase、Web of Science、Cochrane Library中关于腕踝针干预术后疼痛的随...目的运用循证医学方法对腕踝针干预术后疼痛的疗效和安全性进行系统评价和Grade评价。方法计算机检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Embase、Web of Science、Cochrane Library中关于腕踝针干预术后疼痛的随机对照试验,检索时限为建库至2023年10月。采用RevMan 5.4软件进行Meta分析。结果纳入23篇文献,共计1968例患者,Meta分析结果显示,与常规治疗相比,腕踝针能够提高术后疼痛患者的总有效率[OR=4.42,95%CI(2.60,7.50),P<0.001],术后镇痛泵药量使用减少[MD=-9.03,95%CI(-12.09,-5.98),P<0.001],术后疼痛评分降低[MD=-1.39,95%CI(-1.68,-1.09),P<0.001],可减少不良反应发生率[RR=0.40,95%CI(0.32,0.48),P<0.001]以及临床满意度[OR=3.94,95%CI(2.40,6.48),P<0.001]。Grade证据分级结果显示:总有效率、不良反应发生率和临床满意度3项结局指标为中等质量证据,VAS评分指标为低质量证据,镇痛泵药量使用指标为极低质量证据。结论腕踝针可提高总有效率,减少术后镇痛药用量,不良反应少,安全性高,为患者提供了一种安全有效的镇痛方式。展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concent...Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.展开更多
In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,...In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles.展开更多
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ...One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.展开更多
文摘Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
文摘In this paper a fully parametrized finite element simulation model of the stator bar end is created using the COMSOL Multiphysics.The model allows conducting the comparison of different corona protection structures’design,various materials properties,and finally optimizing the corona protection system.Several samples of SiC based nonlinear conductivity materials for corona protection were fabricated in laboratory and then investigated.The conductivity dependencies on electric field(0.05 to 1 kV/mm)and temperature(20 to 155℃)were measured.By comparing the heat-resistant grades of the corona protection material and the insulating material,the maximum working temperature of the corona protection material corresponds to the heat-resistant grade F of the insulating material.As the temperature increases,the nonlinear characteristics of the corona protection material in the experiment decrease dramatically,reducing the heat-resistant grade of the corona protection material.The decrease in the nonlinear characteristics of the corona protection material at the maximum operating temperature causes the maximum electric field strength at the end of the HV rotating machines end corona protection(ECP)exceeding the corona discharge electric field strength,resulting in corona phenomenon.
文摘The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
文摘为了系统评价参芪扶正注射液联合常规治疗作为干预措施对慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患者的临床疗效和安全性。检索中国国家知识基础设施(China national knowledge infrastructure,CNKI)、PubMed、万方数据知识服务平台(Wanfang Data)、维普中文科技期刊数据库(Weipu China science and technology journal database,VIP)等数据库,筛选并纳入2023年6月18日以前发表的参芪扶正注射液联合常规疗法治疗COPD患者的随机对照试验(randomized controlled trials,RCT),采用Cochrane风险评价工具及评估、发展和评价建议分级(grading of recommendations assessment,development and evaluation,GRADE)系统进行文献证据质量评价,用RevMan 5.4软件对临床疗效及安全性指标进行Meta分析。结果表明,共纳入16项RCTs,1 486例患者。Meta分析结果显示,参芪扶正注射液辅助治疗可提高患者总有效率和第1秒用力呼气容积/用力肺活量比值(forced expiratory volume in one second/forced vital capacity,FEV1/FVC)指标,与对照组相比具有优势(P<0.000 01、P<0.000 1);不良反应少,无严重不良反应(adverse drug reactions,ADR),两组对比无统计学差异(P=0.32);GRADE评价结果显示,有效率及不良反应指标的证据质量均为中等级,肺功能为低等级。可见参芪扶正注射辅助治疗COPD可以提高患者临床疗效,改善肺功能,且具有良好的安全性。但所纳入研究具有局限性,证据质量不高,仍需结合中药辨证使用特点,规范实验方案,开展更多的高质量RCT研究。
文摘目的运用循证医学方法对腕踝针干预术后疼痛的疗效和安全性进行系统评价和Grade评价。方法计算机检索中国知网、万方、维普、中国生物医学文献数据库、PubMed、Embase、Web of Science、Cochrane Library中关于腕踝针干预术后疼痛的随机对照试验,检索时限为建库至2023年10月。采用RevMan 5.4软件进行Meta分析。结果纳入23篇文献,共计1968例患者,Meta分析结果显示,与常规治疗相比,腕踝针能够提高术后疼痛患者的总有效率[OR=4.42,95%CI(2.60,7.50),P<0.001],术后镇痛泵药量使用减少[MD=-9.03,95%CI(-12.09,-5.98),P<0.001],术后疼痛评分降低[MD=-1.39,95%CI(-1.68,-1.09),P<0.001],可减少不良反应发生率[RR=0.40,95%CI(0.32,0.48),P<0.001]以及临床满意度[OR=3.94,95%CI(2.40,6.48),P<0.001]。Grade证据分级结果显示:总有效率、不良反应发生率和临床满意度3项结局指标为中等质量证据,VAS评分指标为低质量证据,镇痛泵药量使用指标为极低质量证据。结论腕踝针可提高总有效率,减少术后镇痛药用量,不良反应少,安全性高,为患者提供了一种安全有效的镇痛方式。
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金Project(XDA 29020100)supported by the Strategic Priority Research Program of the Chinese Academy of SciencesProject(2022YFE0206600)supported by National Key R&D Program of China。
文摘Fluidized reduction roasting is an efficient metallurgical technique.However,its application to nickel laterite ore has rarely been reported.In this paper,the effects of reduction temperature,reduction time,CO concentration,and material particle size on the roasting characteristics of ferronickel fluidization reduction were investigated.Combined with X-ray diffraction,scanning electron microscopy-energy dispersive spectrometry(SEM-EDS)characterization,the mineral phases and microscopic morphology of nickel laterite ore and its roasted ores were analyzed in depth.The results indicated that under the condition of a CO/CO_(2)ratio of 1:1,a reduction temperature of 800℃,and a reduction roasting time of 60 min,a nickel-iron concentrate with a nickel grade of 2.10%and an iron content of 45.96%was produced from a raw material with a nickel grade of 1.45%,achieving a remarkable nickel recovery rate of 46.26%.XRD and SEM-EDS analysis indicated that nickel in the concentrate mainly exists in the form of[Fe,Ni],while the unrecovered nickel in the tailings is primarily present in the form of[Fe,Ni]and Ni_(2)SiO_(4)in forsterite.This study established a theoretical foundation for further exploration of fluidized reduction roasting technology.
文摘In this study,the microstructure and mechanical properties of a multi-layered 316L-TiC composite material produced by selective laser melting(SLM)additive manufacturing process are investigated.Three different layers,consisting of 316L stainless steel,316L-5 wt%TiC and 316L-10 wt%TiC,were additively manufactured.The microstructure of these layers was characterized by optical microscopy(OM)and scanning electron microscopy(SEM).X-ray diffraction(XRD)was used for phase analysis,and the mechanical properties were evaluated by tensile and nanoindentation tests.The microstructural observations show epitaxial grain growth within the composite layers,with the elongated grains growing predominantly in the build direction.XRD analysis confirms the successful incorporation of the TiC particles into the 316L matrix,with no unwanted phases present.Nanoindentation results indicate a significant increase in the hardness and modulus of elasticity of the composite layers compared to pure 316L stainless steel,suggesting improved mechanical properties.Tensile tests show remarkable strength values for the 316L-TiC composite samples,which can be attributed to the embedded TiC particles.These results highlight the potential of SLM in the production of multi-layer metal-ceramic composites for applications that require high strength and ductility of metallic components in addition to the exceptional hardness of the ceramic particles.
文摘One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.