To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy w...To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy which is very important in landing position, and then we derived the SA error by eliminating almost all other errors including ionospheric and tropospheric timedelays and clock errors both in satellites and in receiver, etc. By means of the system identificationtheory, an SA errorl all SA error model with the second-order Gauss-Maukov stochastic process wasderived and simulated. With the selected parameters of the stochastic process) the simulation resultsshow that there is the excellent agreement between the simulated SA error model and that of reallyapplied in GPS system.展开更多
The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts whic...The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation.展开更多
A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means o...A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.展开更多
Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, naviga tion activities and accurate surveying measurements since ...Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, naviga tion activities and accurate surveying measurements since 90 s in the last cen tury due to its advantage in providing all-weather, real-time, three dimensional and high precision positioning information, as well as speed and accurate timing information. By now, it has already formed a new hi-tech industry basically.This paper briefly reviews the development of the global satellite positioning and navigation technologies including the basic information of China's "Plough navigation system", introduces the history of satellite positioning technology and its major application fields as well as the status quo of this being industri alized trade in China, gives an account of the writers' vision for the application and prospect of the satellite positioning technologies in China, and approaches the tactics and stresses of the satellite positioning technology's application and its industrialization future in China.展开更多
文摘To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy which is very important in landing position, and then we derived the SA error by eliminating almost all other errors including ionospheric and tropospheric timedelays and clock errors both in satellites and in receiver, etc. By means of the system identificationtheory, an SA errorl all SA error model with the second-order Gauss-Maukov stochastic process wasderived and simulated. With the selected parameters of the stochastic process) the simulation resultsshow that there is the excellent agreement between the simulated SA error model and that of reallyapplied in GPS system.
基金This work was supported in pert by NIST Contract No. 40RANB9B8112.
文摘The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation.
基金Project (ZYGX2010J119)supported by the Fundamental Research Funds for the Central Universities of China
文摘A three-dimensional positioning method for global positioning system(GPS)receivers based on three satellites was proposed.In the method,the measurement equation used for positioning calculation was expanded by means of two measures.In this case,the measurement equation could be solved,and the function of positioning calculation could be performed.The detailed steps of the method and how to evaluate the positioning precision of the method were given,respectively.The positioning performance of the method was demonstrated through some experiments.It is shown that the method can provide the three-dimensional positioning information under the condition that there are only three useful satellites.
文摘Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, naviga tion activities and accurate surveying measurements since 90 s in the last cen tury due to its advantage in providing all-weather, real-time, three dimensional and high precision positioning information, as well as speed and accurate timing information. By now, it has already formed a new hi-tech industry basically.This paper briefly reviews the development of the global satellite positioning and navigation technologies including the basic information of China's "Plough navigation system", introduces the history of satellite positioning technology and its major application fields as well as the status quo of this being industri alized trade in China, gives an account of the writers' vision for the application and prospect of the satellite positioning technologies in China, and approaches the tactics and stresses of the satellite positioning technology's application and its industrialization future in China.