国防科技大学自主研制的高性能加速器采用中央处理器(CPU)+通用数字信号处理器(GPDSP)的片上异构融合架构,使用超长指令集(VLIW)+单指令多数据流(SIMD)的向量化结构的GPDSP是峰值性能主要支撑的加速核。主流编译器在密集的数据计算指令...国防科技大学自主研制的高性能加速器采用中央处理器(CPU)+通用数字信号处理器(GPDSP)的片上异构融合架构,使用超长指令集(VLIW)+单指令多数据流(SIMD)的向量化结构的GPDSP是峰值性能主要支撑的加速核。主流编译器在密集的数据计算指令排布、为指令静态分配硬件执行单元、GPDSP特有的向量指令等方面不能很好地支持高性能加速器。基于低级虚拟器(LLVM)编译框架,在前寄存器分配调度阶段,结合峰值寄存器压力感知方法(PERP)、蚁群优化(ACO)算法与GPDSP结构特点,优化代价模型,设计支持寄存器压力感知的指令调度模块;在后寄存器分配阶段提出支持静态功能单元分配的指令调度策略,通过冲突检测机制保证功能单元分配的正确性,为指令并行执行提供软件基础;在后端封装一系列丰富且规整的向量指令接口,实现对GPDSP向量指令的支持。实验结果表明,所提出的LLVM编译架构优化方法从功能和性能上实现了对GPDSP的良好支撑,GCC testsuite测试整体性能平均加速比为4.539,SPEC CPU 2017浮点测试整体性能平均加速比为4.49,SPEC CPU 2017整型测试整体性能平均加速比为3.24,使用向量接口的向量程序实现了平均97.1%的性能提升率。展开更多
随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了...随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了形式化描述,验证了进行指令级调度的必要性。对处理器核内流水线进行详细分析,指出了指令级调度的一般性问题。提出了在众核结构上使用指令级调度和软件流水的方法。针对Splash2程序集里的LU分解算法,使用众核结构的硬件支持,在Scratched Pad Memory(SPM)上给出了调度指令的方案。在众核仿真器Godson-T上仿真了经过指令级调度后的算法,当使用64个线程处理512×512的矩阵时,程序性能达到调度前性能的4倍。展开更多
文摘国防科技大学自主研制的高性能加速器采用中央处理器(CPU)+通用数字信号处理器(GPDSP)的片上异构融合架构,使用超长指令集(VLIW)+单指令多数据流(SIMD)的向量化结构的GPDSP是峰值性能主要支撑的加速核。主流编译器在密集的数据计算指令排布、为指令静态分配硬件执行单元、GPDSP特有的向量指令等方面不能很好地支持高性能加速器。基于低级虚拟器(LLVM)编译框架,在前寄存器分配调度阶段,结合峰值寄存器压力感知方法(PERP)、蚁群优化(ACO)算法与GPDSP结构特点,优化代价模型,设计支持寄存器压力感知的指令调度模块;在后寄存器分配阶段提出支持静态功能单元分配的指令调度策略,通过冲突检测机制保证功能单元分配的正确性,为指令并行执行提供软件基础;在后端封装一系列丰富且规整的向量指令接口,实现对GPDSP向量指令的支持。实验结果表明,所提出的LLVM编译架构优化方法从功能和性能上实现了对GPDSP的良好支撑,GCC testsuite测试整体性能平均加速比为4.539,SPEC CPU 2017浮点测试整体性能平均加速比为4.49,SPEC CPU 2017整型测试整体性能平均加速比为3.24,使用向量接口的向量程序实现了平均97.1%的性能提升率。
文摘随着集成电路工艺的发展,众核处理器体系结构逐渐成为计算机体系结构设计者的研究热点。众核体系结构通过任务级的并行来提升整个处理器的性能。然而,指令级的并行性仍然是众核设计者需要认真考虑的问题。对浮点运算效率和加速比进行了形式化描述,验证了进行指令级调度的必要性。对处理器核内流水线进行详细分析,指出了指令级调度的一般性问题。提出了在众核结构上使用指令级调度和软件流水的方法。针对Splash2程序集里的LU分解算法,使用众核结构的硬件支持,在Scratched Pad Memory(SPM)上给出了调度指令的方案。在众核仿真器Godson-T上仿真了经过指令级调度后的算法,当使用64个线程处理512×512的矩阵时,程序性能达到调度前性能的4倍。