期刊文献+
共找到1,565篇文章
< 1 2 79 >
每页显示 20 50 100
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
1
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
2
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization 被引量:3
3
作者 Dai Xiaoming, Sun Rang, Zou Runmin2, Xu Chao & Shao Huihe(. Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China College of Information Science and Enginereing, Central South University, Changsha 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第2期84-91,共8页
Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti... Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA. 展开更多
关键词 CANONICAL Genetic algorithm Ergodic homogeneous Markov chain global convergence.
在线阅读 下载PDF
An adaptive genetic algorithm with diversity-guided mutation and its global convergence property 被引量:9
4
作者 李枚毅 蔡自兴 孙国荣 《Journal of Central South University of Technology》 EI 2004年第3期323-327,共5页
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene... An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten. 展开更多
关键词 diversity-guided mutation adaptive genetic algorithm Markov chain global convergence
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
5
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
6
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Lower Bounds and a Nearly Fastest General Parallel Branch-and-Bound Algorithm 被引量:2
7
作者 Wu, Jigang Xie, Xing +1 位作者 Wan, Yingyu Chen, Guoliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第3期65-73,共9页
In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log ... In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree. 展开更多
关键词 branch-and-bound State-space tree Active list Parallel algorithm Combinatorial search.
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
8
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
9
作者 TAN Guan-Zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
在线阅读 下载PDF
Global optimization by small-world optimization algorithm based on social relationship network 被引量:1
10
作者 李晋航 邵新宇 +2 位作者 龙渊铭 朱海平 B.R.Schlessman 《Journal of Central South University》 SCIE EI CAS 2012年第8期2247-2265,共19页
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol... A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems. 展开更多
关键词 global optimization intelligent algorithm small-world optimization decentralized search
在线阅读 下载PDF
The Algorithms for Achieving Global States and Self-Stabilization for Communication Protocols
11
作者 Li Layuan & Li Chunlin(Department of Computer Science & Engineering. Wuhan Transportation University,430063,P . R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第4期34-41,共8页
This paper discusses the algorithms for achieving global states and self-stabilizationfor communication protocols. It first describes a primary algorithm including its suitability forachieving global states and limita... This paper discusses the algorithms for achieving global states and self-stabilizationfor communication protocols. It first describes a primary algorithm including its suitability forachieving global states and limitation of self-stabilization for communication protocols, and thenpresents an improved algorithm that can be suitable to achieve global states and can be also usedto self-stabilizing communication protocols. Filially, it gives the proof of correctness and analysis ofcomplexity of the improved algorithm, and verifies its availability and efficiency by illustrating anexample protocol. 展开更多
关键词 Communication protocols algorithm for achieving global states Self-stabilization Computer networks Multimedia communication networks.
在线阅读 下载PDF
The Fast Blind Equalization Algorithm with Global Convergence
12
作者 LuJun LiTong 《通信学报》 EI CSCD 北大核心 1997年第3期79-82,共4页
TheFastBlindEqualizationAlgorithmwithGlobalConvergenceLuJunLiTong(InstituteofInformationandEngineeringofPLA,... TheFastBlindEqualizationAlgorithmwithGlobalConvergenceLuJunLiTong(InstituteofInformationandEngineeringofPLA,Zhengzhou450002)A... 展开更多
关键词 盲道均衡 整体收敛 均衡算法 全局最小值 信号
在线阅读 下载PDF
Global Optimization for Combination Test Suite by Cluster Searching Algorithm
13
作者 Hao Chen Xiaoying Pan Jiaze Sun 《自动化学报》 EI CSCD 北大核心 2017年第9期1625-1635,共11页
在线阅读 下载PDF
基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法 被引量:1
14
作者 何振宇 毛亿 +1 位作者 杨扬 陈武 《通信学报》 北大核心 2025年第2期44-58,共15页
利用全球导航卫星系统无源雷达多卫星的特点,提出一种基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法。首先,在多个双基地几何配置下,采用长时间积累技术在距离-多普勒域聚焦目标能量;然后,将聚焦的目标能量投影到笛卡儿平... 利用全球导航卫星系统无源雷达多卫星的特点,提出一种基于改进差分进化算法的GNSS无源多基地雷达海上目标定位方法。首先,在多个双基地几何配置下,采用长时间积累技术在距离-多普勒域聚焦目标能量;然后,将聚焦的目标能量投影到笛卡儿平面进行联合检测和定位。为提高投影处理效率,提出一种改进差分进化算法,该算法采用优劣势双种群协同进化策略,能够兼顾算法的收敛性和种群多样性。仿真和现场实验结果表明,所提方法在定位和速度估计精度方面与现有算法相当,但计算耗时显著减少。 展开更多
关键词 全球导航卫星系统 无源雷达 长时间积累 投影处理 差分进化算法
在线阅读 下载PDF
基于广义换热网络的质量交换网络质能比拟及全局优化 被引量:1
15
作者 肖媛 陈怡 +1 位作者 刘思琪 崔国民 《化工进展》 北大核心 2025年第1期121-134,共14页
质量交换网络是过程系统高效经济回收污染物或杂质的重要途径,其中组分浓度的小尺度特征对于其求解域和全局优化性能存在一定限制。基于质量传递和能量传递比拟理论,本文假设了单位高度塔板提供有效传质的塔板质量,建立了非连续传质的... 质量交换网络是过程系统高效经济回收污染物或杂质的重要途径,其中组分浓度的小尺度特征对于其求解域和全局优化性能存在一定限制。基于质量传递和能量传递比拟理论,本文假设了单位高度塔板提供有效传质的塔板质量,建立了非连续传质的板式塔和广义换热器的比拟关系;在此基础上,将小尺度质量交换网络比拟为广义换热网络,进而采用节点非结构模型和强制进化随机游走算法对广义换热网络进行全局优化;最后,将优化所得的广义换热网络回归为质量交换网络,使其满足传质可行性约束。算例分析表明,该方法可有效拓展质量交换网络搜索空间,提升流股匹配的多样性和全局优化性能。同时,灵活调整比拟尺度和协调系数能够进一步丰富优化路径,提升最优解的质量,获得了R2S3算例和R2S2算例优于文献最优的结构。 展开更多
关键词 过程系统 质量交换网络 质能比拟 广义换热网络 全局优化 强制进化随机游走算法
在线阅读 下载PDF
一类新的无参数的填充打洞函数法
16
作者 袁柳洋 汤梦瑶 迟晓妮 《运筹学学报(中英文)》 北大核心 2025年第2期214-220,共7页
自填充函数算法被提出以来,参数被视为制约算法效率的主要因素,因此构造无参数的填充函数显得极为重要。为了提高算法效率,本文构造了一类新的无参数的填充打洞函数,分析并讨论了该函数的性质。基于新的填充打洞函数,提出了一个新的全... 自填充函数算法被提出以来,参数被视为制约算法效率的主要因素,因此构造无参数的填充函数显得极为重要。为了提高算法效率,本文构造了一类新的无参数的填充打洞函数,分析并讨论了该函数的性质。基于新的填充打洞函数,提出了一个新的全局优化算法,并对算法进行了数值实验,数值实验结果表明该算法可行且有效。 展开更多
关键词 填充函数法 打洞函数法 全局优化算法 局部极小点 全局极小点
在线阅读 下载PDF
适应性引导的花朵授粉算法
17
作者 郭肇禄 石涛 +1 位作者 杨火根 张文生 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期114-130,共17页
针对传统花朵授粉算法在求解一些复杂优化问题时存在着开采能力不足的缺点,提出了一种适应性引导的花朵授粉算法(AGFPA)。所提算法设计了环优策略和向优策略相结合的适应性引导机制,适应性地控制最优个体对种群演化的引导作用,既增强算... 针对传统花朵授粉算法在求解一些复杂优化问题时存在着开采能力不足的缺点,提出了一种适应性引导的花朵授粉算法(AGFPA)。所提算法设计了环优策略和向优策略相结合的适应性引导机制,适应性地控制最优个体对种群演化的引导作用,既增强算法的开采能力,又尽可能维持种群的多样性。适应性引导机制中的环优策略在最优个体的周围执行导向开采,使得种群集中搜索最优个体的邻域;而向优策略利用最优个体的引导进行定向搜索,使得搜索有向地覆盖较广的未知区域。此外,设计了适应性参数控制策略,根据不同演化阶段的需求,调整全局授粉转换概率和最优引导的步长因子,从而维持开采能力和勘探能力的平衡。为检验所提算法的性能,在群智能研究领域中常用的18个基准测试函数上进行了策略有效性分析,并将AGFPA分别与几种改进的FPA和PSO算法进行比较;同时,应用AGFPA估计发酵动力学参数。实验结果表明,在求解大多数单峰、多峰和复杂函数时,AGFPA均具有较为优秀的寻优能力;在发酵动力学参数估计应用中,AGFPA也具有一定的优势。 展开更多
关键词 花朵授粉算法 适应性引导机制 环优策略 向优策略 适应性参数控制策略 发酵动力学参数
在线阅读 下载PDF
基于全局和声搜索算法的椭圆拟合
18
作者 雍龙泉 张媛媛 黎延海 《安徽大学学报(自然科学版)》 北大核心 2025年第1期1-7,共7页
建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数... 建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数据没有异常值的条件下,即使有噪声,拟合结果也较好. 展开更多
关键词 椭圆拟合 绝对值函数 约束优化 全局和声搜索算法
在线阅读 下载PDF
汽车驱动桥螺旋锥齿轮齿面测量误差补偿方法
19
作者 刘永生 谭佳敏 +3 位作者 王瑞富 户盼茹 甘鑫斌 陈一馨 《汽车安全与节能学报》 北大核心 2025年第2期197-206,共10页
提升汽车驱动桥螺旋锥齿轮齿面加工质量对整车的安全与节能性能有重要意义,该文针对汽车驱动桥螺旋锥齿轮实测和理论齿面存在的测量误差,提出了一种基于对偶四元数优化的迭代最近点(ICP)齿面测量误差补偿方法。将误差补偿问题转化为两... 提升汽车驱动桥螺旋锥齿轮齿面加工质量对整车的安全与节能性能有重要意义,该文针对汽车驱动桥螺旋锥齿轮实测和理论齿面存在的测量误差,提出了一种基于对偶四元数优化的迭代最近点(ICP)齿面测量误差补偿方法。将误差补偿问题转化为两曲面的配准问题,利用对偶四元数对齿面配准模型进行表示并得出误差矩阵,将误差矩阵线性化并使用凸松弛的全局优化算法对其实部进行优化,实现螺旋锥齿轮齿面的精确配准。结果表明:螺旋锥齿轮凹齿面的误差补偿率最高达77%,最大误差由补偿前的22.11μm降至5.64μm,平均误差由补偿前的10.34μm降至2.38μm,该算法与传统奇异值分解法(SVD)、四元数法和Levenberg-Marquardt法(L-M)相比有更高的求解精度和稳定性,证明所提出的补偿方法具有可行性。 展开更多
关键词 驱动桥 螺旋锥齿轮 对偶四元数 迭代最近点算法(ICP) 全局优化
在线阅读 下载PDF
不动点演化算法
20
作者 苏清华 洪楠 胡中波 《西南交通大学学报》 北大核心 2025年第1期175-184,共10页
为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorith... 为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度. 展开更多
关键词 演化算法 全局优化 不动点迭代法 Aitken加速法 工程约束设计问题
在线阅读 下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部