地震反演技术能够最有效地从地震信号中挖掘地层参数和岩性信息,一直是储层预测研究的焦点.传统线性地震反演算法缺乏全局搜索能力,反演结果精度较低.本研究以全局寻优为出发点,将一种结构简单和寻优能力强的全局优化算法——梯度优化算...地震反演技术能够最有效地从地震信号中挖掘地层参数和岩性信息,一直是储层预测研究的焦点.传统线性地震反演算法缺乏全局搜索能力,反演结果精度较低.本研究以全局寻优为出发点,将一种结构简单和寻优能力强的全局优化算法——梯度优化算法(Gradient-Based Optimizer,GBO),引入地震反演.相比于差分进化等其他全局优化算法,GBO算法通过梯度随机搜索机制和局部逃逸算子进行全局搜索,能有效降低地震反演的多解性.但是,GBO算法收敛速度慢和局部随机性强,难以满足大批量的地震反演计算需求.因此,本文在GBO算法迭代过程中引入Wolfe线性局部搜索机制,提出基于Wolfe搜索的随机梯度优化算法(Stochastic—Gradient Optimization Based on Wolfe's Search,SGO-WS).在全局搜索过程中,通过线性搜索算子,充分挖掘当前迭代解周围的局部最优,既保证了反演解精度,又大幅提高了原GBO算法的计算效率,同时还有效降低了反演解的局部随机性.Marmousi-2模型测试验证了SGO-WS算法的可行性和准确性,厄瓜多尔Tapir油田地震资料也验证了SGO-WS算法的实用性.展开更多
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza...针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解.展开更多
针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment...针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。展开更多
针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始...针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始化,克服随机初始化导致的搜索空间覆盖不均的问题;其次,结合余弦函数在[0,π/2]的函数变化特点,提出基于余弦函数的非线性收敛因子调节策略,采用具有全局探索与局部开发能力的平衡算法提升寻优精度。针对储能系统频繁充放电导致寿命衰减的问题,通过量化储能系统频繁充放电造成的寿命损耗成本,建立计及光伏维护成本、电网交互成本及储能寿命损耗折算成本的经济优化调度模型。利用改进灰狼优化算法求解优化调度模型,并与其他优化算法进行对比,仿真结果表明:相较于传统定时充放电策略和常规能量分配方案,所提方法在晴天和阴天场景下均展现出更优的经济性,验证了所提的改进灰狼优化算法能够更好地实现并网模式下交流微电网灵活经济运行,为高比例可再生能源接入的微电网系统提供了兼顾经济性与实用性的优化调度新思路。展开更多
巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(...巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。展开更多
针对桥梁检测车伸缩臂结构的轻量化问题,文中以最小结构质量为目标,提出一种改进灰狼算法(Ameliorated Grey Wolf Algorithm, AGWO)。根据问题特征建立了伸缩臂结构的数学模型,针对灰狼算法的缺陷,引入混沌策略和反向学习生成灰狼初始种...针对桥梁检测车伸缩臂结构的轻量化问题,文中以最小结构质量为目标,提出一种改进灰狼算法(Ameliorated Grey Wolf Algorithm, AGWO)。根据问题特征建立了伸缩臂结构的数学模型,针对灰狼算法的缺陷,引入混沌策略和反向学习生成灰狼初始种群,提高初始解的质量,同时,将自适应步长加入到灰狼算法的优化过程中,提高算法的收敛速度,并在满足可靠性的前提下,使其达到轻量化的效果。最后,应用有限元分析,检验了改进后算法的可行性,得出优化后的质量减小了18.33%,对实际工程结构的设计有指导意义。展开更多
文摘地震反演技术能够最有效地从地震信号中挖掘地层参数和岩性信息,一直是储层预测研究的焦点.传统线性地震反演算法缺乏全局搜索能力,反演结果精度较低.本研究以全局寻优为出发点,将一种结构简单和寻优能力强的全局优化算法——梯度优化算法(Gradient-Based Optimizer,GBO),引入地震反演.相比于差分进化等其他全局优化算法,GBO算法通过梯度随机搜索机制和局部逃逸算子进行全局搜索,能有效降低地震反演的多解性.但是,GBO算法收敛速度慢和局部随机性强,难以满足大批量的地震反演计算需求.因此,本文在GBO算法迭代过程中引入Wolfe线性局部搜索机制,提出基于Wolfe搜索的随机梯度优化算法(Stochastic—Gradient Optimization Based on Wolfe's Search,SGO-WS).在全局搜索过程中,通过线性搜索算子,充分挖掘当前迭代解周围的局部最优,既保证了反演解精度,又大幅提高了原GBO算法的计算效率,同时还有效降低了反演解的局部随机性.Marmousi-2模型测试验证了SGO-WS算法的可行性和准确性,厄瓜多尔Tapir油田地震资料也验证了SGO-WS算法的实用性.
文摘针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。
文摘针对传统灰狼优化(grey wolf optimization,GWO)算法在求解并网模式下微电网优化调度模型时存在种群分布不均以及易陷入局部最优等问题,对传统灰狼优化算法进行改进。首先,在传统灰狼优化算法基础上引入Tent混沌映射进行种群多样性初始化,克服随机初始化导致的搜索空间覆盖不均的问题;其次,结合余弦函数在[0,π/2]的函数变化特点,提出基于余弦函数的非线性收敛因子调节策略,采用具有全局探索与局部开发能力的平衡算法提升寻优精度。针对储能系统频繁充放电导致寿命衰减的问题,通过量化储能系统频繁充放电造成的寿命损耗成本,建立计及光伏维护成本、电网交互成本及储能寿命损耗折算成本的经济优化调度模型。利用改进灰狼优化算法求解优化调度模型,并与其他优化算法进行对比,仿真结果表明:相较于传统定时充放电策略和常规能量分配方案,所提方法在晴天和阴天场景下均展现出更优的经济性,验证了所提的改进灰狼优化算法能够更好地实现并网模式下交流微电网灵活经济运行,为高比例可再生能源接入的微电网系统提供了兼顾经济性与实用性的优化调度新思路。
文摘巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。
文摘针对桥梁检测车伸缩臂结构的轻量化问题,文中以最小结构质量为目标,提出一种改进灰狼算法(Ameliorated Grey Wolf Algorithm, AGWO)。根据问题特征建立了伸缩臂结构的数学模型,针对灰狼算法的缺陷,引入混沌策略和反向学习生成灰狼初始种群,提高初始解的质量,同时,将自适应步长加入到灰狼算法的优化过程中,提高算法的收敛速度,并在满足可靠性的前提下,使其达到轻量化的效果。最后,应用有限元分析,检验了改进后算法的可行性,得出优化后的质量减小了18.33%,对实际工程结构的设计有指导意义。